满分5 > 高中数学试题 >

两县城A和B相距20km,现计划在两县城外以AB为直径的半圆弧上选择一点C建造垃...

manfen5.com 满分网两县城A和B相距20km,现计划在两县城外以AB为直径的半圆弧上选择一点C建造垃圾处理厂,其对城市的影响度与所选地点到城市的距离有关,对城A和城B的总影响度为城A与城B的影响度之和,记C点到城A的距离为x km,建在C处的垃圾处理厂对城A和城B的总影响度为y,统计调查表明:垃圾处理厂对城A的影响度与所选地点到城A的距离的平方成反比,比例系数为4;对城B的影响度与所选地点到城B的距离的平方成反比,比例系数为k,当垃圾处理厂建在的中点时,对城A和城B的总影响度为0.065.
(1)将y表示成x的函数;
(2)讨论(1)中函数的单调性,并判断弧上是否存在一点,使建在此处的垃圾处理厂对城A和城B的总影响度最小?若存在,求出该点到城A的距离;若不存在,说明理由.
(1)先利用AC⊥BC,求出BC2=400-x2,再利用圾处理厂对城A的影响度与所选地点到城A的距离的平方成反比,比例系数为4;对城B的影响度与所选地点到城B的距离的平方成反比,比例系数为k,得到y和x之间的函数关系,最后利用垃圾处理厂建在的中点时,对城A和城B的总影响度为0.065求出k即可求出结果. (11)先求出导函数以及导数为0的根,进而求出其单调区间,找到函数的最小值即可. 解(1)由题意知AC⊥BC,BC2=400-x2, 其中当时,y=0.065, 所以k=9 所以y表示成x的函数为 (2),, 令y'=0得18x4=8(400-x2)2, 所以x2=160,即, 当时,18x4<8(400-x2)2,即y'<0所以函数为单调减函数, 当时,18x4>8(400-x2)2,即y'>0所以函数为单调增函数. 所以当时,即当C点到城A的距离为时,函数有最小值. (注:该题可用基本不等式求最小值.)
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网(a>0):
(1)若f(x)在[1,+∞)上递增,求a的取值范围;  
(2)求f(x)在[1,4]上的最小值.
查看答案
已知函数manfen5.com 满分网,在y轴右侧的第一个最高点的横坐标为manfen5.com 满分网
(Ⅰ)求ω的值;
(Ⅱ)若将函数f(x)的图象向右平移manfen5.com 满分网个单位后,再将得到的图象上各点横坐标伸长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)的最大值及单调递减区间.
查看答案
已知集合A={x|x2-2x-3<0},B={x|(x-m+1)(x-m-1)≥0}.
(1)当m=0时,求A∩B;
(2)若p:x∈A,q:x∈B,且q是p的必要不充分条件,求实数m的取值范围.
查看答案
设f(x)是定义在R上的可导函数,且满足f(x)+xf′(x)>0.则不等式manfen5.com 满分网的解集为    查看答案
若y=f(x)是定义在R上周期为2的周期函数,且f(x)是偶函数,当x∈[0,1]时,f(x)=2x-1,则函数g(x)=f(x)-log5|x|的零点个数为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.