满分5 > 高中数学试题 >

已知二次函数f(x)=ax2+bx+c. (1)若f(-1)=0,试判断函数f(...

已知二次函数f(x)=ax2+bx+c.
(1)若f(-1)=0,试判断函数f(x)零点个数;
(2)若对∀x1,x2∈R,且x1<x2,f(x1)≠f(x2),试证明∃x∈(x1,x2),使manfen5.com 满分网成立.
(3)是否存在a,b,c∈R,使f(x)同时满足以下条件①对∀x∈R,f(x-4)=f(2-x),且f(x)≥0;②对∀x∈R,都有manfen5.com 满分网.若存在,求出a,b,c的值,若不存在,请说明理由.
(1)将x=-1代入得到关于a、b、c的关系式,再由△确定零点个数. (2)令g(x)=f(x)-,再由函数零点的判定定理可证. (3)假设存在a,b,c∈R使得条件成立,由①可知函数f(x)的对称轴是x=-1,且最小值为0,由此可知a=c;由②知将x=1代入可求的a=c=,b=,最后验证即可. 解析:(1)∵f(-1)=0, ∴a-b+c=0,b=a+c ∵△=b2-4ac=(a+c)2-4ac=(a-c)2 当a=c时△=0,函数f(x)有一个零点; 当a≠c时,△>0,函数f(x)有两个零点. (2)令,则, ∴ ∴g(x)=0在(x1,x2)内必有一个实根.即∃x∈(x1,x2),使成立. (3)假设a,b,c存在,由①知抛物线的对称轴为x=-1,且f(x)min=0 ∴⇒b=2a,b2=4ac⇒4a2=4ac⇒a=c 由②知对∀x∈R,都有 令x=1得0≤f(1)-1≤0⇒f(1)-1=0⇒f(1)=1⇒a+b+c=1 由得, 当时,,其顶点为(-1,0)满足条件①,又⇒对∀x∈R,都有,满足条件②. ∴存在a,b,c∈R,使f(x)同时满足条件①、②.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网两县城A和B相距20km,现计划在两县城外以AB为直径的半圆弧上选择一点C建造垃圾处理厂,其对城市的影响度与所选地点到城市的距离有关,对城A和城B的总影响度为城A与城B的影响度之和,记C点到城A的距离为x km,建在C处的垃圾处理厂对城A和城B的总影响度为y,统计调查表明:垃圾处理厂对城A的影响度与所选地点到城A的距离的平方成反比,比例系数为4;对城B的影响度与所选地点到城B的距离的平方成反比,比例系数为k,当垃圾处理厂建在的中点时,对城A和城B的总影响度为0.065.
(1)将y表示成x的函数;
(2)讨论(1)中函数的单调性,并判断弧上是否存在一点,使建在此处的垃圾处理厂对城A和城B的总影响度最小?若存在,求出该点到城A的距离;若不存在,说明理由.
查看答案
manfen5.com 满分网(a>0):
(1)若f(x)在[1,+∞)上递增,求a的取值范围;  
(2)求f(x)在[1,4]上的最小值.
查看答案
已知函数manfen5.com 满分网,在y轴右侧的第一个最高点的横坐标为manfen5.com 满分网
(Ⅰ)求ω的值;
(Ⅱ)若将函数f(x)的图象向右平移manfen5.com 满分网个单位后,再将得到的图象上各点横坐标伸长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)的最大值及单调递减区间.
查看答案
已知集合A={x|x2-2x-3<0},B={x|(x-m+1)(x-m-1)≥0}.
(1)当m=0时,求A∩B;
(2)若p:x∈A,q:x∈B,且q是p的必要不充分条件,求实数m的取值范围.
查看答案
设f(x)是定义在R上的可导函数,且满足f(x)+xf′(x)>0.则不等式manfen5.com 满分网的解集为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.