满分5 > 高中数学试题 >

设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA (Ⅰ...

设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA
(Ⅰ)求B的大小;
(Ⅱ)求cosA+sinC的取值范围.
(1)先利用正弦定理求得sinB的值,进而求得B. (2)把(1)中求得B代入cosA+sinC中利用两角和公式化简整理,进而根据A的范围和正弦函数的性质求得cosA+sinC的取值范围. 【解析】 (Ⅰ)由a=2bsinA,根据正弦定理得sinA=2sinBsinA,所以, 由△ABC为锐角三角形得. (Ⅱ)===. 由△ABC为锐角三角形知,<A<., 所以. 由此有, 所以,cosA+sinC的取值范围为.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,在三棱锥P-ABC中,PA、PB、PC两两垂直,且PA=3.PB=2,PC=1.设M是底面ABC内一点,定义f(M)=(m,n,p),其中m、n、p分别是三棱锥M-PAB、三棱锥M-PBC、三棱锥M-PCA的体积.若f(M)=(manfen5.com 满分网,x,y),且manfen5.com 满分网≥8恒成立,则正实数a的最小值为    查看答案
已知函数f(x)=2x(x∈R),且f(x)=g(x)+h(x),其中g(x)为奇函数,h(x)为偶函数.若不等式2a•g(x)+h(2x)≥0对任意x∈[1,2]恒成立,则实数a的取值范围是    查看答案
设三棱柱的侧棱垂直于底面,所有棱的长都为a,顶点都在一个球面上,则该球的表面积为    查看答案
设m,n为空间的两条直线,α,β为空间的两个平面,给出下列命题:
(1)若m∥α,m∥β,则α∥β;
(2)若m⊥α,m⊥β,则α∥β;
(3)若m∥α,n∥α,则m∥n;
(4)若m⊥α,n⊥α,则m∥n.
上述命题中,所有真命题的序号是    查看答案
已知角φ的终边经过点P(1,-2),函数f(x)=sin(ωx+φ)(ω>0)图象的相邻两条对称轴之间的距离等于manfen5.com 满分网,则manfen5.com 满分网=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.