满分5 > 高中数学试题 >

如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD...

如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2,M为线段AB的中点.将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D-ABC,如图2所示.
(Ⅰ)求证:BC⊥平面ACD;
(Ⅱ)求二面角A-CD-M的余弦值.
manfen5.com 满分网
(Ⅰ)要证BC⊥平面ACD,只需证明BC垂直平面ACD内的两条相交直线AC、OD即可; (Ⅱ)建立空间直角坐标系,求出两个平面的法向量,利用向量的数量积,求二面角A-CD-M的余弦值. 【解析】 (Ⅰ)在图1中,可得,从而AC2+BC2=AB2,故AC⊥BC 取AC中点O连接DO,则DO⊥AC,又面ADC⊥面ABC, 面ADC∩面ABC=AC,DO⊂面ACD,从而OD⊥平面ABC,(4分) ∴OD⊥BC 又AC⊥BC,AC∩OD=O, ∴BC⊥平面ACD(6分) 另【解析】 在图1中,可得, 从而AC2+BC2=AB2,故AC⊥BC ∵面ADC⊥面ABC,面ADE∩面ABC=AC,BC⊂面ABC,从而BC⊥平面ACD (Ⅱ)建立空间直角坐标系O-xyz如图所示, 则,, , (8分) 设为面CDM的法向量, 则即,解得 令x=-1,可得 又为面ACD的一个法向量 ∴ ∴二面角A-CD-M的余弦值为.(12分)
复制答案
考点分析:
相关试题推荐
已知数列{an}的前n项和为Sn,且manfen5.com 满分网
(1)求证:数列{1+an}是等比数列,并求数列{an}的通项公式an
(2)设manfen5.com 满分网,求证:manfen5.com 满分网
查看答案
已知manfen5.com 满分网
(1)求manfen5.com 满分网
(2)若manfen5.com 满分网manfen5.com 满分网平行,求k的值;
(3)若manfen5.com 满分网manfen5.com 满分网的夹角是钝角,求实数k的取值范围.
查看答案
已知f(x)定义在(0,+∞)上的非负可导函数,且满足xf′(x)-f(x)≥0,对于任意的正数a,b,若a<b,
①af(b)≤bf(a)
②af(b)≥bf(a)
③af(a)≤bf(b)
④af(a)≥bf(b)
其中正确的是    查看答案
等比数列{an}中,a1=1,a2010=4,函数f(x)=x(x-a1)(x-a2)…(x-a2010),则函数f(x) 在点(0,0)处的切线方程为    查看答案
在边长为1的正三角形ABC中,manfen5.com 满分网,则manfen5.com 满分网的值等于    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.