满分5 > 高中数学试题 >

已知函数f(x)=x2+alnx. (1)当a=-2时,求函数f(x)的单调区间...

已知函数f(x)=x2+alnx.
(1)当a=-2时,求函数f(x)的单调区间和极值;
(2)若manfen5.com 满分网在[1,+∞)上是单调函数,求实数a的取值范围.
(1)求出函数f(x)的导数,得到导数在x=1时为零.然后列表讨论函数在区间(0,1)和(1,+∞)上讨论函数的单调性,即可得到函数f(x)的单调区间和极值; (2)在[1,+∞)上是单调函数,说明g(x)的导数g'(x)在区间[1,+∞)恒大于等于0,或g'(x)在区间[1,+∞)恒小于等于0.然后分两种情况加以讨论,最后综合可得实数a的取值范围. 【解析】 (1)易知,函数f(x)的定义域为(0,+∞).…(1分) 当a=-2时,.…(2分) 当x变化时,f'(x)和f(x)的值的变化情况如下表:…(4分) x (0,1) 1 (1,+∞) f'(x) - + f(x) 递减 极小值 递增 由上表可知,函数f(x)的单调递减区间是(0,1),单调递增区间是(1,+∞),极小值是f(1)=1.…(8分) (2)由,得.…(9分) 又函数为[1,+∞)上单调函数, ①若函数g(x)为[1,+∞)上的单调增函数, 则g'(x)≥0在[1,+∞)上恒成立, 即不等式在[1,+∞)上恒成立. 也即在[1,+∞)上恒成立, 而φ(x)=在[1,+∞)上的最大值为φ(1)=0,所以a≥0.…(12分) ②若函数g(x)为[1,+∞)上的单调减函数, 根据①,在[1,+∞)上φ(x)max=φ(1)=0,φ(x)没有最小值.…(13分) 所以g'(x)≤0在[1,+∞)上是不可能恒成立的.…(15分) 综上,a的取值范围为[0,+∞).…(16分)
复制答案
考点分析:
相关试题推荐
已知{an}为等差数列,且a1+a3=8,a2+a4=12.
(Ⅰ)求{an}的通项公式
(Ⅱ)记{an}的前n项和为Sn,若a1,ak,Sk+2成等比数列,求正整数k的值.
查看答案
在锐角△ABC中,已知角A、B、C所对的边分别为a,b,c且manfen5.com 满分网,若c2=a2+b2-ab
(1)求角A、B、C的大小
(2)若边c=6,求边b的值.
查看答案
已知:manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网是同一平面上的三个向量,其中manfen5.com 满分网=(1,2).
(1)若|manfen5.com 满分网|=2manfen5.com 满分网,且manfen5.com 满分网manfen5.com 满分网,求manfen5.com 满分网的坐标.
(2)若|manfen5.com 满分网|=manfen5.com 满分网,且manfen5.com 满分网+2manfen5.com 满分网与2manfen5.com 满分网-manfen5.com 满分网垂直,求manfen5.com 满分网manfen5.com 满分网的夹角θ
查看答案
设f(x)=ax2+(b-8)x-a-ab,不等式f(x)>0的解集是(-3,2).
(1)求f(x);
(2)当函数f(x)的定义域是[0,1]时,求函数f(x)的值域.
查看答案
已知函数f(x)=cos2x+sinxcosx(x∈R)
(I)求f(manfen5.com 满分网)的值;
(Ⅱ)求f(x)的单调递增区间.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.