(1)根据函数f(x)的定义域关于原点对称,且f(-x)=-f(x),可得函数f(x)是偶函数.
(2)由于-3≤x≤3,求出函数的值域,画出函数的图象,由函数f(x)的图象和直线y=m有两个交点,数形结合求出m的取值范围.
【解析】
(1)证明:由于函数f(x)=x2-2|x|-1(-3≤x≤3)
的定义域关于原点对称,且f(-x)=(-x)2-2|-x|-1=x2-2|x|-1=f(x),
故函数f(x)是偶函数.
(2)由于-3≤x≤3,f(x)=x2-2|x|-1,
故当x=±1时,函数取得最小值为-2,
当x=±3时,函数取得最大值为2.
画出函数f(x)=x2-2|x|-1(-3≤x≤3)的图象,如图:
若方程f(x)=m有两个根,则函数f(x)的图象和直线y=m有两个交点.
数形结合可得,m=-2,或 2≥m>-1.