取x=1,得f(3)=-f(-3)=1;f(x-4)=f(-x),则f(x-2)=f(-x-2);奇函数f(x),x∈[-2,2]时,函数为单调增函数,利用函数f(x)关于直线x=-2对称,可得函数f(x)在[-6,-2]上是减函数;若m∈(0,1),则关于x的方程f(x)-m=0在[-8,8]上有4个根,其中两根的和为-6×2=-12,另两根的和为2×2=4,故可得结论.
【解析】
取x=1,得f(1-4)=-f(1)=-=-1,所以f(3)=-f(-3)=1,故甲的结论正确;
定义在R上的奇函数f(x)满足f(x-4)=-f(x),则f(x-4)=f(-x),∴f(x-2)=f(-x-2),∴函数f(x)关于直线x=-2对称,故丙不正确;
奇函数f(x),x∈[0,2]时,f(x)=log2(x+1),∴x∈[-2,2]时,函数为单调增函数,∵函数f(x)关于直线x=-2对称,∴函数f(x)在[-6,-2]上是减函数,故乙不正确;
若m∈(0,1),则关于x的方程f(x)-m=0在[-8,8]上有4个根,其中两根的和为-6×2=-12,另两根的和为2×2=4,所以所有根之和为-8.故丁正确
故选D