满分5 > 高中数学试题 >

已知a,b,c分别为△ABC三个内角A,B,C的对边, (1)求A; (2)若a...

已知a,b,c分别为△ABC三个内角A,B,C的对边,manfen5.com 满分网
(1)求A;
(2)若a=2,△ABC的面积为manfen5.com 满分网;求b,c.
(1)由正弦定理及两角和的正弦公式可得sinAcosC+sinAsinC=sinB+sinC=sin(A+C)+sinC=sinAcosC+sinCcosA+sinC,整理可求A (2)由(1)所求A及S=可求bc,然后由余弦定理,a2=b2+c2-2bccosA=(b+c)2-2bc-2bccosA可求b+c,进而可求b,c 【解析】 (1)∵acosC+asinC-b-c=0 ∴sinAcosC+sinAsinC-sinB-sinC=0 ∴sinAcosC+sinAsinC=sinB+sinC=sin(A+C)+sinC=sinAcosC+sinCcosA+sinC ∵sinC≠0 ∴sinA-cosA=1 ∴sin(A-30°)= ∴A-30°=30° ∴A=60° (2)由 由余弦定理可得,a2=b2+c2-2bccosA=(b+c)2-2bc-2bccosA 即4=(b+c)2-3bc=(b+c)2-12 ∴b+c=4 解得:b=c=2
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网,且给定条件p:manfen5.com 满分网
(1)求函数f(x)的单调递减区间;     
(2)在¬p的条件下,求f(x)的值域;
(3)若条件q:-2<f(x)-m<2,且¬p是q的充分条件,求实数m的取值范围.
查看答案
设f(x)=x3+ax2+bx+1的导数f'(x)满足f'(1)=2a,f'(2)=-b,其中常数a,b∈R.
(I)求曲线y=f(x)在点(1,f(1))处的切线方程.
(II)设g(x)=f′(x)e-x.求函数g(x)的极值.
查看答案
已知向量manfen5.com 满分网
(1)若manfen5.com 满分网⊥(manfen5.com 满分网),求tan(α+β)的值;
(2)若manfen5.com 满分网manfen5.com 满分网,求tanαtanβ的值.
查看答案
关于x的方程(x2-4)2-4|x2-4|+k=0,给出下列四个命题:
①存在实数k,使得方程恰有2个不同的实根;
②存在实数k,使得方程恰有4个不同的实根;
③存在实数k,使得方程恰有5个不同的实根;
④存在实数k,使得方程恰有6个不同的实根;
⑤存在实数k,使得方程恰有8个不同的实根.
其中真命题的序号是    (写出所有真命题的序号). 查看答案
在△ABC中,角A、B、C所对的边分别为a、b、c,且满足asinB=bcosA,则manfen5.com 满分网的最大值是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.