满分5 > 高中数学试题 >

如图:PA⊥平面ABCD,ABCD是矩形,PA=AB=1,AD=,点F是PB的中...

manfen5.com 满分网如图:PA⊥平面ABCD,ABCD是矩形,PA=AB=1,AD=manfen5.com 满分网,点F是PB的中点,点E在边BC上移动.
(Ⅰ)求三棱锥E-PAD的体积;
(Ⅱ)当点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;
(Ⅲ)证明:无论点E在边BC的何处,都有PE⊥AF.
本题考查了空间几何体的体积、线面位置关系的判定、线面垂直等知识点, (Ⅰ)利用换底法求VP-ADE即可;(Ⅱ)利用三角形的中位线及线面平行的判定定理解决; (Ⅲ)通过证明AF⊥平面PBE即可解决. 【解析】 (Ⅰ)三棱锥E-PAD的体积.(4分) (Ⅱ)当点E为BC的中点时,EF与平面PAC平行.(5分) ∵在△PBC中,E、F分别为BC、PB的中点, ∴EF∥PC,又EF⊄平面PAC,而PC⊂平面PAC, ∴EF∥平面PAC.(8分) (Ⅲ)证明: ∵PA⊥平面ABCD,BE⊂平面ABCD, ∴EB⊥PA,又EB⊥AB,AB∩AP=A,AB,AP⊂平面PAB, ∴EB⊥平面PAB,又AF⊂平面PAB, ∴AF⊥BE.(10分) 又PA=AB=1,点F是PB的中点, ∴AF⊥PB, 又∵PB∩BE=B,PB,BE⊂平面PBE, ∴AF⊥平面PBE. ∵PE⊂平面PBE, ∴AF⊥PE.(12分)
复制答案
考点分析:
相关试题推荐
设函数manfen5.com 满分网
(1)写出函数f(x)的最小正周期及单调递减区间;
(2)当manfen5.com 满分网时,函数f(x)的最大值与最小值的和为manfen5.com 满分网,求a的值.
查看答案
已知f(x)=manfen5.com 满分网,(a>0,且a≠1).
(1)求f(x)的定义域.   
(2)证明f(x)为奇函数.
(3)求使f(x)>0成立的x的取值范围.
查看答案
manfen5.com 满分网已知某几何体的俯视图是如图所示的矩形,正视图(或称主视图)是一个底边长为8,高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6,高为4的等腰三角形.
(1)求该几何体的体积V;
(2)求该几何体的侧面积S.
查看答案
已知c>0,设P:函数y=cx在R上单调递减,Q:不等式x+|x-2c|>1的解集为R.如果P和Q有且仅有一个正确,求c的取值范围.
查看答案
关于x的方程2x=a2+a在(-∞,1]上有解,则实数a的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.