满分5 > 高中数学试题 >

设定函数,且方程f′(x)-9x=0的两个根分别为1,4. (Ⅰ)当a=3且曲线...

设定函数manfen5.com 满分网,且方程f′(x)-9x=0的两个根分别为1,4.
(Ⅰ)当a=3且曲线y=f(x)过原点时,求f(x)的解析式;
(Ⅱ)若f(x)在(-∞,+∞)无极值点,求a的取值范围.
先对函数f(x)进行求导,然后代入f′(x)-9x=0中,再由方程有两根1、4可得两等式; (1)将a的值代入即可求出b,c的值,再由f(0)=0可求d的值,进而确定函数解析式. (2)f(x)在(-∞,+∞)无极值点即函数f(x)是单调函数,且可判断是单调增函数,再由导函数大于等于0在R上恒成立可解. 【解析】 由得f′(x)=ax2+2bx+c 因为f′(x)-9x=ax2+2bx+c-9x=0的两个根分别为1,4,所以(*) (Ⅰ)当a=3时,又由(*)式得 解得b=-3,c=12 又因为曲线y=f(x)过原点,所以d=0 故f(x)=x3-3x2+12x (Ⅱ)由于a>0,所以“在(-∞,+∞)内无极值点”等价于“f′(x)=ax2+2bx+c≥0在(-∞,+∞)内恒成立”. 由(*)式得2b=9-5a,c=4a. 又△=(2b)2-4ac=9(a-1)(a-9) 解得a∈[1,9] 即a的取值范围[1,9]
复制答案
考点分析:
相关试题推荐
已知tan(α+manfen5.com 满分网)=-3,α∈(0,manfen5.com 满分网).
(1)求tanα的值;
(2)求sin(2α-manfen5.com 满分网)的值.
查看答案
设函数f(x)=1-xsinx在x=x处取极值,则(1+x2)(1+cos2x)=    查看答案
已知函数y=ax-1(a>0,且a≠1)的图象恒过定点A,若点A在一次函数y=mx+n的图象上,其中m,n>0,则manfen5.com 满分网+manfen5.com 满分网的最小值为    查看答案
在极坐标系中,圆ρ=2cosθ的圆心到直线ρcosθ=2的距离是    查看答案
已知sin(manfen5.com 满分网-x)=manfen5.com 满分网,则sin2x的值为     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.