根据f(x)是定义在R上的奇函数,满足,可以推出函数的周期为3,要求方程f(x)=0在区间[0,6]上的解的个数,根据函数f(x)是定义域为R的周期为3的奇函数,且当x∈(0,1.5)时f(x)=ln(x2-x+1),我们不难得到一个周期函数零点的个数,根据周期性进行分析不难得到结论.
【解析】
∵f(x)是定义在R上的奇函数,满足.
∴f(x++)=f(-+x+),可得f(x+3)=f(x),
函数f(x)的周期为3,
∵当x∈(0,1.5)时f(x)=ln(x2-x+1),
令f(x)=0,则x2-x+1=1,解得x=1
又∵函数f(x)是定义域为R的奇函数,
∴在区间∈[-1.5,1.5]上,
f(-1)=-f(1)=0,f(0)=0.
∴f(1.5)=f(-1.5+3)=f(-1.5)=-f(-1.5),
∴f(-1)=f(1)=f(0)=f(1.5)=f(-1.5)=0
又∵函数f(x)是周期为3的周期函数,
则方程f(x)=0在区间[0,6]上的解有0,1,1.5,2,3,4,4.5,5,6,
共9个,
故选D;