由题意:f(2+x)=-f(2-x)”可得f(x)=-f(4-x),由函数f(x)是偶函数可得f(x)=f(-x),结合两者得f(x-4)=-f(x),它是以8为周期的周期函数,
f(2007)=f(-1)=f(1),从而解决问题.
【解析】
∵f(2+x)=-f(2-x),
令t=2+x,则2-x=4-t
∴f(x)=-f(4-x),
∵由函数f(x)是偶函数
∴f(x)=f(-x),
∴结合两者得f(x-4)=-f(x),f(x-8)=f[(x-4)-4]=-f(x-4)=f(x),
它是周期函数,且周期为8,
∴f(2007)=f(250×8+7)=f(7)=f(-1)=f(1)
在f(2+x)=-f(2-x)中,令x=1,得f(3)=-f(1)=-2,
∴f(1)=2,即f(2007)=2
故选A.