满分5 > 高中数学试题 >

已知{an}是等差数列,其前n项和为Sn,{bn}是等比数列,且a1=b1=2,...

已知{an}是等差数列,其前n项和为Sn,{bn}是等比数列,且a1=b1=2,a4+b4=27,s4-b4=10.
(1)求数列{an}与{bn}的通项公式;
(2)记Tn=anb1+an-1b2+…+a1bn,n∈N*,证明:Tn+12=-2an+10bn(n∈N*).
(1)直接设出首项和公差,根据条件求出首项和公差,即可求出通项. (2)先写出Tn的表达式;方法一:借助于错位相减求和; 方法二:用数学归纳法证明其成立. 【解析】 (1)设等差数列的公差为d,等比数列的公比为q, 由a1=b1=2,得a4=2+3d,b4=2q3,s4=8+6d, 由条件a4+b4=27,s4-b4=10, 得方程组,解得, 故an=3n-1,bn=2n,n∈N*. (2)证明:方法一,由(1)得,Tn=2an+22an-1+23an-2+…+2na1;   ①; 2Tn=22an+23an-1+…+2na2+2n+1a1;     ②; 由②-①得,Tn=-2(3n-1)+3×22+3×23+…+3×2n+2n+2 =+2n+2-6n+2 =10×2n-6n-10; 而-2an+10bn-12=-2(3n-1)+10×2n-12=10×2n-6n-10; 故Tn+12=-2an+10bn(n∈N*). 方法二:数学归纳法, ③当n=1时,T1+12=a1b1+12=16,-2a1+10b1=16,故等式成立, ④假设当n=k时等式成立,即Tk+12=-2ak+10bk, 则当n=k+1时有, Tk+1=ak+1b1+akb2+ak-1b3+…+a1bk+1 =ak+1b1+q(akb1+ak-1b2+…+a1bk) =ak+1b1+qTk =ak+1b1+q(-2ak+10bk-12) =2ak+1-4(ak+1-3)+10bk+1-24 =-2ak+1+10bk+1-12. 即Tk+1+12=-2ak+1+10bk+1,因此n=k+1时等式成立. ③④对任意的n∈N*,Tn+12=-2an+10bn成立.
复制答案
考点分析:
相关试题推荐
某种汽车购车费用是10万元,每年使用的保险费、养路费、汽油费共计约0.9万元,年维修费第一年是0.2万元,以后逐年递增0.2万元.问这种汽车使用多少年报废最合算?(最佳报废时间也就是年平均费用最低的时间)
查看答案
已知各项均为正数的等比数列{an}中,a2=4,a4=16.
(1)求公比q;
(2)若a3,a5分别为等差数列{bn}的第3项和第5项,求数列{bn}的通项公式.
查看答案
设△ABC的内角A、B、C所对边的长分别为a、b、c,且有2sinBcosA=sinAcosC+cosAsinC.
(Ⅰ)求角A的大小;
(Ⅱ)若b=2,c=1,D为BC的中点,求AD的长.
查看答案
已知函数y=(k2+4k-5)x2+4(1-k)x+3的图象都在x轴上方,求实数k的取值范围.
查看答案
要测量河对岸两地A,B之间的距离,在岸边选取相距100manfen5.com 满分网米的C,D两点,并测得∠ACB=75°,∠BCD=45°,∠ADC=30°,∠ADB=45°(A,B,C,D在同一平面内),求A,B之间的距离.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.