(I)设等比数列{an}的公比为q,由a2是a1和a3-1的等差中项,a1=1,知2a2=a1+(a3-1)=a3,由此能求出数列{an}的通项公式..
(Ⅱ)由bn=2n-1+an,知(2n-1+2n-1)=[1+3+5+…+(2n-1)]+(1+2+22+…+2n-1),由等差数列和等比数列的求和公式能求出Sn.
【解析】
(I)设等比数列{an}的公比为q,
∵a2是a1和a3-1的等差中项,a1=1,
∴2a2=a1+(a3-1)=a3,
∴=2,
∴=2n-1,(n∈N*).
(Ⅱ)∵bn=2n-1+an,
∴(2n-1+2n-1)
=[1+3+5+…+(2n-1)]+(1+2+22+…+2n-1)
=+
=n2+2n-1.