满分5 > 高中数学试题 >

某旅游点有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经...

某旅游点有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超出6元,则每超过1元,租不出的自行车就增加3辆.
为了便于结算,每辆自行车的日租金x(元)只取整数,并且要求出租自行车一日的总收入必须高于这一日的管理费用,用y(元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后的所得).
(1)求函数y=f(x)的解析式及其定义域;
(2)试问当每辆自行车的日租金为多少元时,才能使一日的净收入最多?
(1)利用函数关系建立各个取值范围内的净收入与日租金的关系式,写出该分段函数,是解决该题的关键,注意实际问题中的自变量取值范围; (2)利用一次函数,二次函数的单调性解决该最值问题是解决本题的关键.注意自变量取值区间上的函数类型.应取每段上最大值的较大的即为该函数的最大值. 【解析】 (1)当x≤6时,y=50x-115,令50x-115>0, 解得x>2.3. ∵x∈N*,∴x≥3,∴3≤x≤6,x∈N*, 当x>6时,y=[50-3(x-6)]x-115. 令[50-3(x-6)]x-115>0,有3x2-68x+115<0, 上述不等式的整数解为2≤x≤20(x∈N*), ∴6<x≤20(x∈N*). 故y=, 定义域为{x|3≤x≤20,x∈N*}. (2)对于y=50x-115(3≤x≤6,x∈N*). 显然当x=6时,ymax=185(元), 对于y=-3x2+68x-115=-3+(6<x≤20,x∈N*). 当x=11时,ymax=270(元). ∵270>185, ∴当每辆自行车的日租金定在11元时,才能使一日的净收入最多.
复制答案
考点分析:
相关试题推荐
定义在R上的函数f(x)满足:f(1)=1,且对于任意的x∈R,都有f′(x)<manfen5.com 满分网,则不等式f(log2x)>manfen5.com 满分网的解集为    查看答案
若关于x的不等式|x-1|-|x-2|≥a2+a+1(x∈R)的解集为空集,则实数a的取值范围是    查看答案
一物体沿直线以速度v(t)=2t-3(t的单位为:秒,v的单位为:米/秒)的速度作变速直线运动,则该物体从时刻t=0秒至时刻 t=5秒间运动的路程是    查看答案
已知等差数列{an}的公差为2,项数是偶数,所有奇数项之和为15,所有偶数项之和为35,则这个数列的项数为    查看答案
已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<manfen5.com 满分网的部分图象如图所示,则函数f(x)的解析式为( )
manfen5.com 满分网
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.