满分5 > 高中数学试题 >

已知等差数列{an}满足a2=0,a6+a8=-10 (I)求数列{an}的通项...

已知等差数列{an}满足a2=0,a6+a8=-10
(I)求数列{an}的通项公式;
(II)求数列{manfen5.com 满分网}的前n项和.
(I) 根据等差数列的通项公式化简a2=0和a6+a8=-10,得到关于首项和公差的方程组,求出方程组的解即可得到数列的首项和公差,根据首项和公差写出数列的通项公式即可; (II) 把(I)求出通项公式代入已知数列,列举出各项记作①,然后给两边都除以2得另一个关系式记作②,①-②后,利用an的通项公式及等比数列的前n项和的公式化简后,即可得到数列{}的前n项和的通项公式. 【解析】 (I)设等差数列{an}的公差为d,由已知条件可得, 解得:, 故数列{an}的通项公式为an=2-n; (II)设数列{}的前n项和为Sn,即Sn=a1++…+①,故S1=1, =++…+②, 当n>1时,①-②得: =a1++…+- =1-(++…+)- =1-(1-)-=, 所以Sn=, 综上,数列{}的前n项和Sn=.
复制答案
考点分析:
相关试题推荐
如图,四棱锥S-ABCD的底面是正方形,每条侧棱的长都是底面边长的manfen5.com 满分网倍,P为侧棱SD上的点.
(Ⅰ)求证:AC⊥SD;
(Ⅱ)若SD⊥平面PAC,求二面角P-AC-D的大小.

manfen5.com 满分网 查看答案
某学生在上学路上要经过3个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是manfen5.com 满分网,遇到红灯时停留的时间都是2min.
(1)求这名学生在上学路上到第三个路口时首次遇到红灯的概率;
(2)求这名学生在上学路上因遇到红灯停留的总时间ξ的分布列及期望.
查看答案
已知函数f(x)=2sin(manfen5.com 满分网x-manfen5.com 满分网),x∈R
(1)求f(manfen5.com 满分网)的值;
(2)设α,β∈[0,manfen5.com 满分网],f(3α+manfen5.com 满分网)=manfen5.com 满分网,f(3β+2π)=manfen5.com 满分网,求cos(α+β)的值.
查看答案
如图,四边形ABCD是圆O的内接四边形,延长AB和DC相交于点P.若PB=1,PD=3,则manfen5.com 满分网的值为   
manfen5.com 满分网 查看答案
(坐标系与参数方程选做题)以直角坐标系的原点为极点,x轴的正半轴为极轴,并在两种坐标系中取相同的长度单位.已知圆C的参数方程为manfen5.com 满分网(α为参数),直线l的极坐标方程为manfen5.com 满分网,则直线l被圆C所截的弦长为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.