满分5 > 高中数学试题 >

已知函数f(x)=x3-3ax-1,a≠0 (1)求f(x)的单调区间; (2)...

已知函数f(x)=x3-3ax-1,a≠0
(1)求f(x)的单调区间;
(2)若f(x)在x=-1处取得极值,直线y=m与y=f(x)的图象有三个不同的交点,求m的取值范围.
(1)先确求导数fˊ(x),在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,fˊ(x)>0的区间是增区间,fˊ(x)<0的区间是减区间. (2)先根据极值点求出a,然后利用导数研究函数的单调性,求出极值以及端点的函数值,观察可知m的范围. 解析:(1)f′(x)=3x2-3a=3(x2-a), 当a<0时,对x∈R,有f′(x)>0, 当a<0时,f(x)的单调增区间为(-∞,+∞) 当a>0时,由f′(x)>0解得或; 由f′(x)<0解得, 当a>0时,f(x)的单调增区间为; f(x)的单调减区间为. (2)因为f(x)在x=-1处取得极大值, 所以f′(-1)=3×(-1)2-3a=0,∴a=1. 所以f(x)=x3-3x-1,f′(x)=3x2-3, 由f′(x)=0解得x1=-1,x2=1. 由(1)中f(x)的单调性可知,f(x)在x=-1处取得极大值f(-1)=1, 在x=1处取得极小值f(1)=-3. 因为直线y=m与函数y=f(x)的图象有三个不同的交点, 结合f(x)的单调性可知,m的取值范围是(-3,1).
复制答案
考点分析:
相关试题推荐
已知函数f(x)=x3+ax2+bx+5,记f(x)的导数为f′(x).
(1)若曲线f(x)在点(1,f(1))处的切线斜率为3,且x=manfen5.com 满分网时,y=f(x)有极值,求函数f(x)的解析式;
(2)在(I)的条件下,求函数f(x)在[-4,1]上的最大值和最小值.
查看答案
已知函数f(x)是定义域在R上的偶函数,且在区间(-∞,0)上单调递减,求满足f(x2+2x+3)>f(-x2-4x-5)的x的集合.
查看答案
已知函数f(x)=cos2x-2sinxcosx-sin2x.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)的最大值、最小值.
查看答案
已知曲线C:y=2x2-x3,点P(0,-4),直线l过点P且与曲线C相切于点Q,则点Q的横坐标为    ,切线方程为    查看答案
已知函数f(x)=x3-12x+8在区间[-3,3]上的最大值与最小值分别为M,m,则M-m=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.