(1)由函数的解析式可得函数开口方向及对称轴,分类讨论给定区间与对称轴的关系,分析函数的单调性后,可得最值;
(2)若g(a)-m≤0恒成立,则m不小于g(a)的最大值,分析函数g(a)的单调性求阳其最值可得答案.
【解析】
(1)对称轴x=-a
①当-a≤0⇒a≥0时,
f(x)在[0,2]上是增函数,x=0时有最小值f(0)=-a-1…(1分)
②当-a≥2⇒a≤-2时,
f(x)在[0,2]上是减函数,x=2时有最小值f(2)=3a+3…(1分)
③当0<-a<2⇒-2<a<0时,
f(x)在[0,2]上是不单调,x=-a时有最小值f(-a)=-a2-a-1…(2分)
∴…(2分)
(2)存在,
由题知g(a)在是增函数,在是减函数
∴时,,…(2分)
g(a)-m≤0恒成立
⇒g(a)max≤m,
∴…(2分),
∵m为整数,
∴m的最小值为0…(1分)