满分5 > 高中数学试题 >

集合A={-1,0,1},B={x|x=m2+1,m∈R},则A∩B= .

集合A={-1,0,1},B={x|x=m2+1,m∈R},则A∩B=   
根据题意,分析可得集合B={x|x≥1},结合交集的定义,计算可得A∩B,即可得答案. 【解析】 根据题意,集合B={x|x=m2+1,m∈R}={x|x≥1}, 又由集合A={-1,0,1}, 则A∩B={1}, 故答案为{1}.
复制答案
考点分析:
相关试题推荐
设f(x)=manfen5.com 满分网为奇函数,a为常数,
(Ⅰ)求a的值;
(Ⅱ)证明:f(x)在(1,+∞)内单调递增;
(Ⅲ)若对于[3,4]上的每一个x的值,不等式f(x)>manfen5.com 满分网+m恒成立,求实数m的取值范围.
查看答案
已知函数f(x)=x2+manfen5.com 满分网(x≠0,a∈R)
(Ⅰ)判断f(x)的奇偶性(直接写出你的结论)
(Ⅱ)若f(x)在[2,+∞)是增函数,求实数a的范围.
查看答案
设函数f(x)=x2+2ax-a-1,x∈[0,2],a为常数.
(1)求f(x)的最小值g(a)的解析式;
(2)在(1)中,是否存在最小的整数m,使得g(a)-m≤0对于任意a∈R均成立,若存在,求出m的值;若不存在,请说明理由.
查看答案
已知f(x)=x2+(lga+2)x+lgb,f(-1)=-2,当x∈R时f(x)≥2x恒成立,求实数a的值,并求此时f(x)的最小值?
查看答案
设A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0},若B⊆A,求实数a的取值范围.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.