(1)BC1⊥平面AB1C,即要证BC1与平面AB1C内两条相交直线均垂直,结合已知、直棱柱的几何特征及正方形的性质,可证得结论.
(2)要证BC1∥平面CA1D,必须证明BC1∥平面CA1D内的一条直线,因而连接AC1与A1C的交点E与D,证明即可.
证明:(1)∵三棱柱ABC-A1B1C1为直三棱柱
∴CC1⊥平面ABC;
又∵AC⊂平面ABC
∴CC1⊥AC
又∵AC⊥BC,CC1∩BC=C
∴AC⊥平面B1C1CB
又∵B1C⊂平面B1C1CB
∴B1C⊥AC
又∵BC=BB1,
∴平面B1C1CB为正方形,
∴B1C⊥BC1,又∵B1C∩AC=C
∴BC1⊥平面AB1C;
(2)连接BC1,连接AC1于E,连接DE,E是AC1中点,
D是AB中点,则DE∥BC1,
又DE⊂面CA1D1,BC1⊄面CA1D1
∴BC1∥面CA1D