(1)由正弦定理及两角和的正弦公式可得sinAcosC+sinAsinC=sinB+sinC=sin(A+C)+sinC=sinAcosC+sinCcosA+sinC,整理可求A
(2)由(1)所求A及S=可求bc,然后由余弦定理,a2=b2+c2-2bccosA=(b+c)2-2bc-2bccosA可求b+c,进而可求b,c
【解析】
(1)∵acosC+asinC-b-c=0
∴sinAcosC+sinAsinC-sinB-sinC=0
∴sinAcosC+sinAsinC=sinB+sinC=sin(A+C)+sinC=sinAcosC+sinCcosA+sinC
∵sinC≠0
∴sinA-cosA=1
∴sin(A-30°)=
∴A-30°=30°
∴A=60°
(2)由
由余弦定理可得,a2=b2+c2-2bccosA=(b+c)2-2bc-2bccosA
即4=(b+c)2-3bc=(b+c)2-12
∴b+c=4
解得:b=c=2