满分5 > 高中数学试题 >

已知函数在[1,+∞)上为增函数,且θ∈(0,π),,m∈R. (1)求θ的值;...

已知函数manfen5.com 满分网在[1,+∞)上为增函数,且θ∈(0,π),manfen5.com 满分网,m∈R.
(1)求θ的值;
(2)若f(x)-g(x)在[1,+∞)上为单调函数,求m的取值范围;
(3)设manfen5.com 满分网,若在[1,e]上至少存在一个x,使得f(x)-g(x)>h(x)成立,求m的取值范围.
(1)由题意可知.由θ∈(0,π),知sinθ>0.再由sinθ≥1,结合θ∈(0,π),可以得到θ的值. (2)由题设条件知.mx2-2x+m≥0或者mx2-2x+m≤0在[1,+∞)恒成立.由此知,由此可知m的取值范围. (3)构造F(x)=f(x)-g(x)-h(x),.由此入手可以得到m的取值范围是. 【解析】 (1)由题意,≥0在[1,+∞)上恒成立,即. ∵θ∈(0,π),∴sinθ>0.故sinθ•x-1≥0在[1,+∞)上恒成立,只须sinθ•1-1≥0, 即sinθ≥1,只有sinθ=1.结合θ∈(0,π),得. (2)由(1),得f(x)-g(x)=. ∴. ∵f(x)-g(x)在其定义域内为单调函数, ∴mx2-2x+m≥0或者mx2-2x+m≤0在[1,+∞)恒成立.mx2-2x+m≥0等价于m(1+x2)≥2x,即, 而,()max=1,∴m≥1.mx2-2x+m≤0等价于m(1+x2)≤2x,即 在[1,+∞)恒成立,而∈(0,1],m≤0. 综上,m的取值范围是(-∞,0]∪[1,+∞). (3)构造F(x)=f(x)-g(x)-h(x),. 当m≤0时,x∈[1,e],,, 所以在[1,e]上不存在一个x,使得f(x)-g(x)>h(x)成立. 当m>0时,. 因为x∈[1,e],所以2e-2x≥0,mx2+m>0, 所以(F(x))'>0在x∈[1,e]恒成立. 故F(x)在[1,e]上单调递增,,只要, 解得. 故m的取值范围是.
复制答案
考点分析:
相关试题推荐
设数列{an}满足manfen5.com 满分网,令manfen5.com 满分网
(1)试判断数列{bn}是否为等差数列?
(2)若manfen5.com 满分网,求{cn}前n项的和Sn
(3)是否存在m,n(m,n∈N*,m≠n)使得1,am,an三个数依次成等比数列?若存在,求出m,n;若不存在,说明理由.
查看答案
某旅游景点2010年利润为100万元,因市场竞争,若不开发新项目,预测从2011年起每年利润比上一年减少4万元.2011年初,该景点一次性投入90万元开发新项目,预测在未扣除开发所投入资金的情况下,第n年(n为正整数,2011年为第1年)的利润为100(1+manfen5.com 满分网)万元.
(1)设从2011年起的前n年,该景点不开发新项目的累计利润为An万元,开发新项目的累计利润为Bn万元(须扣除开发所投入资金),求An、Bn的表达式;
(2)依上述预测,该景点从第几年开始,开发新项目的累计利润超过不开发新项目的累计利润?
查看答案
在△ABC中,角A、B、C所对的边分别为a、b、c,已知向量manfen5.com 满分网=(c-2b,a),manfen5.com 满分网=(cosA,cosC)且manfen5.com 满分网manfen5.com 满分网
(1)求角A的大小;
(2)若manfen5.com 满分网=4,求边BC的最小值.
查看答案
已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)为偶函数,其图象上相邻的一个最高点和一个 最低点之间的距离为manfen5.com 满分网
(1)求f(x)的解析式;
(2)若manfen5.com 满分网,求manfen5.com 满分网的值.
查看答案
若函数y=manfen5.com 满分网为奇函数.
(1)求a的值;
(2)求函数的定义域;
(3)讨论函数的单调性.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.