(1)由A为三角形的内角,及cosA的值,利用同角三角函数间的基本关系求出sinA的值,再将已知等式的左边sinB中的角B利用三角形的内角和定理变形为π-(A+C),利用诱导公式得到sinB=sin(A+C),再利用两角和与差的正弦函数公式化简,整理后利用同角三角函数间的基本关系即可求出tanC的值;
(2)由tanC的值,利用同角三角函数间的基本关系求出cosC的值,再利用同角三角函数间的基本关系求出sinC的值,将sinC的值代入sinB=cosC中,即可求出sinB的值,由a,sinA及sinC的值,利用正弦定理求出c的值,最后由a,c及sinB的值,利用三角形的面积公式即可求出三角形ABC的面积.
【解析】
(1)∵A为三角形的内角,cosA=,
∴sinA==,
又cosC=sinB=sin(A+C)=sinAcosC+cosAsinC=cosC+sinC,
整理得:cosC=sinC,
则tanC=;
(2)由tanC=得:cosC====,
∴sinC==,
∴sinB=cosC=,
∵a=,∴由正弦定理=得:c===,
则S△ABC=acsinB=×××=.