满分5 > 高中数学试题 >

在长为12cm的线段AB上任取一点M,并以线段AM为一边作正方形,则此正方形的面...

在长为12cm的线段AB上任取一点M,并以线段AM为一边作正方形,则此正方形的面积介于36cm2与81cm2之间的概率为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
本题考查的知识点是几何概型,我们要求出以线段AM为边作正方形,这个正方形的面积介于36 cm2与81 cm2之间,先求得对应线段AM的长,然后代入几何概型公式即可求解. 解析:正方形的面积介于36cm2与81cm2之间, 所以正方形的边长介于6cm到9cm之间. 线段AB的长度为12cm,则所求概率为=. 故选C.
复制答案
考点分析:
相关试题推荐
定义:两个连续函数(图象不间断)f(x),g(x)在区间[a,b]上都有意义,我们称函数|f(x)+g(x)|在[a,b]上的最大值叫做函数f(x)与g(x)在区间[a,b]上的“绝对和”.
(1)试求函数f(x)=x2与g(x)=x(x+2)(x-4)在闭区间[-2,2]上的“绝对和”.
(2)设hm(x)=-4x+m及f(x)=x2都是定义在闭区间[1,3]上,记hm(x)与f(x)的“绝对和”为Dm,如果D(m)的最小值是D(m),则称f(x)可用manfen5.com 满分网“替代”,试求m的值,使f(x)可用manfen5.com 满分网“替代”.
查看答案
已知函数manfen5.com 满分网
(Ⅰ)当k=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)求f(x)的单调区间.
查看答案
f(x)是定义在(-∞,3]上的减函数,不等式f(a2-sinx)≤f(a+1+cos2x)对一切x∈R均成立,求实数a的取值范围.
查看答案
已知数列{an}中,Sn是它的前n项和,并且Sn+1=4an+2,a1=1.
(1)设bn=an+1-2an,求证{bn}是等比数列
(2)设manfen5.com 满分网,求证{Cn}是等差数列
(3)求数列{an}的通项公式及前n项和公式
查看答案
manfen5.com 满分网如图,当甲船位于A处时获悉,在其正东方向相距20海里的B处有一艘渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西30°,相距10海里C处的乙船.
(Ⅰ)求处于C处的乙船和遇险渔船间的距离;
(Ⅱ)设乙船沿直线CB方向前往B处救援,其方向与manfen5.com 满分网成θ角,求f(x)=sin2θsinx+cos2θcosx(x∈R)的值域.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.