满分5 > 高中数学试题 >

如图,在长方体ABCD-A1B1C1D1中AA1=AD=1,E为CD中点. (Ⅰ...

如图,在长方体ABCD-A1B1C1D1中AA1=AD=1,E为CD中点.
(Ⅰ)求证:B1E⊥AD1
(Ⅱ)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的长;若不存在,说明理由.
(Ⅲ)若二面角A-B1E-A1的大小为30°,求AB的长.

manfen5.com 满分网
(Ⅰ)由题意及所给的图形,可以A为原点,,,的方向为X轴,Y轴,Z轴的正方向建立空间直角坐标系,设AB=a,给出图形中各点的坐标,可求出向量与的坐标,验证其数量积为0即可证出两线段垂直. (II)由题意,可先假设在棱AA1上存在一点P(0,0,t),使得DP∥平面B1AE,求出平面B1AE法向量,可法向量与直线DP的方向向量内积为0,由此方程解出t的值,若能解出,则说明存在,若不存在符合条件的t的值,说明不存在这样的点P满足题意. (III)由题设条件,可求面夹二面角的两个平面的法向量,利用两平面的夹角为30°建立关于a的方程,解出a的值即可得出AB的长 【解析】 (I)以A为原点,,,的方向为X轴,Y轴,Z轴的正方向建立空间直角坐标系,如图, 设AB=a,则A(0,0,0),D(0,1,0),D1(0,1,1),E(,1,0),B1(a,0,1) 故=(0,1,1),=(-,1,-1),=(a,0,1),=(,1,0), ∵•=1-1=0 ∴B1E⊥AD1; (II)假设在棱AA1上存在一点P(0,0,t),使得DP∥平面B1AE.此时=(0,-1,t). 又设平面B1AE的法向量=(x,y,z). ∵⊥平面B1AE,∴⊥B1A,⊥AE,得,取x=1,得平面B1AE的一个法向量=(1,-,-a). 要使DP∥平面B1AE,只要⊥,即有•=0,有此得-at=0,解得t=,即P(0,0,), 又DP⊈平面B1AE, ∴存在点P,满足DP∥平面B1AE,此时AP= (III)连接A1D,B1C,由长方体ABCD-A1B1C1D1及AA1=AD=1,得AD1⊥A1D. ∵B1C∥A1D,∴AD1⊥B1C. 由(I)知,B1E⊥AD1,且B1C∩B1E=B1. ∴AD1⊥平面DCB1A1, ∴AD1是平面B1A1E的一个法向量,此时=(0,1,1). 设与所成的角为θ,则cosθ== ∵二面角A-B1E-A1的大小为30°, ∴|cosθ|=cos30°=即=,解得a=2,即AB的长为2
复制答案
考点分析:
相关试题推荐
现有4个人去参加娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.
(1)求这4个人中恰有2人去参加甲游戏的概率;
(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;
(3)用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X-Y|,求随机变量ξ的分布列与数学期望Eξ.
查看答案
在等差数列{an}中,a1=3,其前n项和为Sn,等比数列{bn}的各项均为正数,b1=1,公比为q,且b2+S2=12.q=manfen5.com 满分网
(Ⅰ)求an与bn
(Ⅱ)设数列{cn}满足cn=manfen5.com 满分网,求的{cn}的前n项和Tn
查看答案
已知正三棱锥P-ABC,点P,A,B,C都在半径为manfen5.com 满分网的球面上,若PA,PB,PC两两垂直,则球心到截面ABC的距离为    查看答案
过椭圆左焦点F,倾斜角为manfen5.com 满分网的直线交椭圆于A,B两点,若|FA|=2|FB|,则椭圆的离心率为    查看答案
对于满足0≤p≤4的所有实数p,使不等式x2+px>4x+p-3都成立的x的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.