满分5 > 高中数学试题 >

函数f(x)的定义域为D,若存在闭区间[a,b]⊆D,使得函数f(x)满足:①f...

函数f(x)的定义域为D,若存在闭区间[a,b]⊆D,使得函数f(x)满足:①f(x)在[a,b]内是单调函数;②f(x)在[a,b]上的值域为[2a,2b],则称区间[a,b]为y=f(x)的“倍值区间”.下列函数中存在“倍值区间”的有( )
①f(x)=x2(x≥0);
②f(x)=ex(x∈R);
③f(x)=manfen5.com 满分网(x≥0);
④f(x)=manfen5.com 满分网
A.①②③④
B.①②④
C.①③④
D.①③
根据函数中存在“倍值区间”,则:①f(x)在[a,b]内是单调函数;②或,对四个函数分别研究,从而确定是否存在“倍值区间” 【解析】 函数中存在“倍值区间”,则:①f(x)在[a,b]内是单调函数;②或 ①f(x)=x2(x≥0),若存在“倍值区间”[a,b],则,∴∴ ∴f(x)=x2(x≥0),若存在“倍值区间”[0,2]; ②f(x)=ex(x∈R),若存在“倍值区间”[a,b],则,∴ 构建函数g(x)=ex-2x,∴g′(x)=ex-2, ∴函数在(-∞,ln2)上单调减,在(ln2,+∞)上单调增, ∴函数在x=ln2处取得极小值,且为最小值. ∵g(ln2)=2-2ln2>0,∴g(x)>0恒成立,∴ex-2x=0无解,故函数不存在“倍值区间”; ③,= 若存在“倍值区间”[a,b]⊆[0,1],则,∴,∴a=0,b=1,若存在“倍值区间”[0,1]; ④.不妨设a>1,则函数在定义域内为单调增函数 若存在“倍值区间”[m,n],则,必有, 必有m,n是方程的两个根, 必有m,n是方程的两个根, 由于存在两个不等式的根,故存在“倍值区间”[m,n]; 综上知,所给函数中存在“倍值区间”的有①③④ 故选C.
复制答案
考点分析:
相关试题推荐
已知正项数列{an}中,a1=1,a2=2,2an2=an+12+an-12(n≥2),则a6等于( )
A.16
B.8
C.manfen5.com 满分网
D.4
查看答案
已知点(x,y)是不等式组manfen5.com 满分网表示的平面区域内的一个动点,且目标函数z=2x+y的最大值为7,最小值为1,则manfen5.com 满分网的值为( )
A.2
B.manfen5.com 满分网
C.-2
D.-1
查看答案
设函数manfen5.com 满分网,其中manfen5.com 满分网是非零向量,则“函数f(x)的图象是一条直线”的充分条件是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
已知数列{an}为等差数列,{bn}为等比数列,且满足:a1000+a1012=π,b1b14=-2,则manfen5.com 满分网=( )
A.1
B.-1
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
如图,圆弧型声波DFE从坐标原点O向外传播.若D是DFE弧与x轴的交点,设OD=x(0≤x≤a),圆弧型声波DFE在传播过程中扫过平行四边形OABC的面积为y(图中阴影部分),则函数y=f(x)的图象大致是( )
manfen5.com 满分网
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.