满分5 > 高中数学试题 >

△ABC中,三个内角A、B、C所对的边分别为a、b、c,若B=60°,a=(-1...

△ABC中,三个内角A、B、C所对的边分别为a、b、c,若B=60°,a=(manfen5.com 满分网-1)c.
(1)求角A的大小;
(2)已知当x∈[manfen5.com 满分网manfen5.com 满分网]时,函数f(x)=cos2x+asinx的最大值为3,求△ABC的面积.
(1)用题目中所给的条件建立方程,通过消元得到关于角A的等式,利用它求角A的砰然函数值来,进而求出角. (2)题目中知道了最大值为3,利用fmax=3建立相关的方程,此处要用二次函数在某一个确定区间上的最值问题的相关知识来最值为3的条件转化为参数a的方程来求值,进而再由面积公式求出三角形的面积, 【解析】 (1)因为B=60°,所以A+C=120°,C=120°-A ∵a=(-1)c,由正弦定理可得:sinA=(-1)sinC sinA=(-1)sin(120°-A)=(-1)(sin120°cosA-cos120°sinA) =(-1)(cosA+sinA) 整理得,tanA=1 ∴A=45°. (2)f(x)=1-2sin2x+asinx,令t=sinx, ∵x∈[,], ∴t∈[,1] f(x)=g(t)=-2t2+at+1=-2(t-)2++1,t∈[,1] 若<,即a<2 fmax=g()=a+=3,,故a=5(舍去) 若≤≤1即2≤a≤4, fmax=g()=+1=3,得a=3 若>1,即a>4, fmax=g()=1-2+a=a-1=3,得a=4(舍去) 故a=4,S△ABC=6+2.
复制答案
考点分析:
相关试题推荐
给出下列命题:
(1)三点确定一个平面;
(2)在空间中,过直线外一点只能作一条直线与该直线平行;
(3)若平面α上有不共线的三点到平面β的距离相等,则α∥β;
(4)若直线a、b、c满足a⊥b、a⊥c,则b∥c.
其中正确命题的个数是    查看答案
在实数数列{an}中,已知a1=0,|a2|=|a1-1|,|a3|=|a2-1||,…,|an|=|an-1-1|则a1+a2+a3+a4的最大值为    查看答案
已知函数manfen5.com 满分网,若f(x)<3,则x的取值范围是    查看答案
在一个水平放置的底面半径为manfen5.com 满分网cm的圆柱形量杯中装有适量的水,现放入一个半径为Rcm的实心铁球,球完全浸没于水中且无水溢出,若水面高度恰好上升Rcm,则R=    cm. 查看答案
设a>1,若仅有一个常数c使得对于任意的x∈[a,2a],都有y∈[a,a2]满足方程logax+logay=c,这时,a的取值的集合为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.