满分5 > 高中数学试题 >

如图,设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左右焦点分别为F1,F2,...

如图,设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左右焦点分别为F1,F2,线段OF1,OF2的中点分别为B1,B2,且△AB1B2是面积为4的直角三角形.
(Ⅰ)求该椭圆的离心率和标准方程;
(Ⅱ)过B1做直线l交椭圆于P,Q两点,使PB2⊥QB2,求直线l的方程.

manfen5.com 满分网
(Ⅰ)设椭圆的方程为,F2(c,0),利用△AB1B2是的直角三角形,|AB1|=AB2|,可得∠B1AB2为直角,从而,利用c2=a2-b2,可求,又S=|B1B2||OA|==4,故可求椭圆标准方程; (Ⅱ)由(Ⅰ)知B1(-2,0),B2(2,0),由题意,直线PQ的倾斜角不为0,故可设直线PQ的方程为x=my-2,代入椭圆方程,消元可得(m2+5)y2-4my-16-0,利用韦达定理及PB2⊥QB2,利用可求m的值,进而可求直线l的方程. 【解析】 (Ⅰ)设椭圆的方程为,F2(c,0) ∵△AB1B2是的直角三角形,|AB1|=AB2|,∴∠B1AB2为直角,从而|OA|=|OB2|,即 ∵c2=a2-b2,∴a2=5b2,c2=4b2,∴ 在△AB1B2中,OA⊥B1B2,∴S=|B1B2||OA|= ∵S=4,∴b2=4,∴a2=5b2=20 ∴椭圆标准方程为; (Ⅱ)由(Ⅰ)知B1(-2,0),B2(2,0),由题意,直线PQ的倾斜角不为0,故可设直线PQ的方程为x=my-2 代入椭圆方程,消元可得(m2+5)y2-4my-16=0① 设P(x1,y1),Q(x2,y2), ∴, ∵, ∴= ∵PB2⊥QB2,∴ ∴,∴m=±2 所以满足条件的直线有两条,其方程分别为x+2y+2=0和x-2y+2=0.
复制答案
考点分析:
相关试题推荐
某居民小区有两个相互独立的安全防范系统(简称系统)A和B,系统A和B在任意时刻发生故障的概率分别为manfen5.com 满分网和p.
(Ⅰ)若在任意时刻至少有一个系统不发生故障的概率为manfen5.com 满分网,求p的值;
(Ⅱ)设系统A在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的概率分布列及数学期望Eξ.
查看答案
在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,FC⊥平面ABCD,AE⊥BD,CB=CD=CF.
(Ⅰ)求证:BD⊥平面AED;
(Ⅱ)求二面角F-BD-C的余弦值.

manfen5.com 满分网 查看答案
在△ABC中,角A,B,C所对的边分别为a,b,c,且满足csinA=acosC.
(1)求角C的大小;
(2)求manfen5.com 满分网sinA-cos(B+manfen5.com 满分网)的最大值,并求取得最大值时角A、B的大小.
查看答案
已知函数f(x)=|x2-2ax+b|(x∈R),给出下列四个命题:
①f(x)必是偶函数;
②当f(0)=f(2)时,f(x)的图象必关于x=1对称;
③若a2-b≤0,则f(x)在区间[a,+∞]上是增函数;
④f(x)有最大值|a2-b|.
其中所有真命题的序号是    查看答案
已知变量x,y满足约束条件manfen5.com 满分网,则目标函数z=3x-y的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.