满分5 > 高中数学试题 >

函数f(x)=log2(3x+1)的值域为( ) A.(0,+∞) B.[0,+...

函数f(x)=log2(3x+1)的值域为( )
A.(0,+∞)
B.[0,+∞)
C.(1,+∞)
D.[1,+∞)
函数的定义域为R,结合指数函数性质可知3x>0恒成立,则真数3x+1>1恒成立,再结合对数函数性质即可求得本题值域. 【解析】 根据对数函数的定义可知,真数3x+1>0恒成立,解得x∈R. 因此,该函数的定义域为R, 原函数f(x)=log2(3x+1)是由对数函数y=log2t和t=3x+1复合的复合函数. 由复合函数的单调性定义(同増异减)知道,原函数在定义域R上是单调递增的. 根据指数函数的性质可知,3x>0,所以,3x+1>1, 所以f(x)=log2(3x+1)>log21=0, 故选A.
复制答案
考点分析:
相关试题推荐
已知manfen5.com 满分网,其中i为虚数单位,则a+b=( )
A.-1
B.1
C.2
D.3
查看答案
已知全集U=R,集合M={x|x2-4≤0},则CM=( )
A.{x|-2<x<2}
B.{x|-2≤x≤2}
C.{x|x<-2或x>2}
D.{x|x≤-2或x≥2}
查看答案
选修4-4:坐标系与参数方程
在平面直角坐标系中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.已知直线l上两点M,N的极坐标分别为(2,0),(manfen5.com 满分网),圆C的参数方程manfen5.com 满分网(θ为参数).
(Ⅰ)设P为线段MN的中点,求直线OP的平面直角坐标方程;
(Ⅱ)判断直线l与圆C的位置关系.
查看答案
设函数f(x)=ax3-2bx2+cx+4d(a、b、c、d∈R)图象关于原点对称,且x=1时,f(x)取极小值manfen5.com 满分网
(1)求a、b、c、d的值;
(2)当x∈[-1,1]时,图象上是否存在两点,使得过此两点处的切线互相垂直?试证明你的结论.
查看答案
如图,设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左右焦点分别为F1,F2,线段OF1,OF2的中点分别为B1,B2,且△AB1B2是面积为4的直角三角形.
(Ⅰ)求该椭圆的离心率和标准方程;
(Ⅱ)过B1做直线l交椭圆于P,Q两点,使PB2⊥QB2,求直线l的方程.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.