满分5 > 高中数学试题 >

已知函数f(x)=(a+)lnx+-x(a>1). (l)试讨论f(x)在区间(...

已知函数f(x)=(a+manfen5.com 满分网)lnx+manfen5.com 满分网-x(a>1).
(l)试讨论f(x)在区间(0,1)上的单调性;
(2)当a∈[3,+∞)时,曲线y=f(x)上总存在相异两点P(x1,f(x1)),Q(x2,f (x2 )),使得曲线y=f(x)在点P,Q处的切线互相平行,求证:x1+x2manfen5.com 满分网
(1)求出f′(x),当x∈(0,1)时,解不等式f′(x)>0,f′(x)<0即可. (2)由题意可得,当a∈[3,+∞)时,f′(x1)=f′(x2)(x1,x2>0,且x1≠x2),由此可得a+=>,从而,只要求出在[3,+∞)的最大值即可. 【解析】 (1)由已知,得x>0,=-. 由f′(x)=0,得.因为a>1,所以0,且a. 所以在区间(0,)上,f′(x)<0;在区间(,1)上,f′(x)>0. 故f(x)在(0,)上单调递减,在(,1)上单调递增. 证明:(2)由题意可得,当a∈[3,+∞)时,f′(x1)=f′(x2)(x1,x2>0,且x1≠x2). 即=,所以a+=,a∈[3,+∞). 因为x1,x2>0,且x1≠x2,所以恒成立, 所以,又x1+x2>0,所以,整理得, 令g(a)=,因为a∈[3,+∞),所以a+单调递增,g(a)单调递减, 所以g(a)在[3,+∞)上的最大值为g(3)=, 所以.
复制答案
考点分析:
相关试题推荐
已知椭圆E:manfen5.com 满分网的一个交点为manfen5.com 满分网,而且过点manfen5.com 满分网
(Ⅰ)求椭圆E的方程;
(Ⅱ)设椭圆E的上下顶点分别为A1,A2,P是椭圆上异于A1,A2的任一点,直线PA1,PA2分别交x轴于点N,M,若直线OT与过点M,N的圆G相切,切点为T.证明:线段OT的长为定值,并求出该定值.

manfen5.com 满分网 查看答案
如图,直三棱柱ABC-A'B'C',∠BAC=90°,AB=AC=λAA',点M,N分别为A'B和B'C'的中点.
(I)证明:MN∥平面A'ACC';
(II)若二面角A'-MN-C为直二面角,求λ的值.

manfen5.com 满分网 查看答案
某班50位学生期中考试数学成绩的频率直方分布图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求图中x的值;
(2)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的数学期望.

manfen5.com 满分网 查看答案
等差数列{an}中,a1=3,前n项和为Sn,等比数列{bn}各项均为正数,b1=1,且b2+S2=12,{bn}的公比q=manfen5.com 满分网
(1)求an与bn
(2)证明:manfen5.com 满分网manfen5.com 满分网+manfen5.com 满分网+…+manfen5.com 满分网manfen5.com 满分网
查看答案
函数manfen5.com 满分网(A>0,ω>0)的最大值为3,其图象相邻两条对称轴之间的距离为manfen5.com 满分网
(1)求函数f(x)的解析式;
(2)设manfen5.com 满分网,则manfen5.com 满分网,求α的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.