先确定m,n的范围,再得出m=2,n=6时,取最小值即可.
【解析】
设y=2xm+(2-x)n-8,整理可得y=﹙2m-n﹚x+﹙2n-8﹚
当2m-n>0时,因为x∈[-4,2],所以ymin=﹙2m-n﹚•﹙-4﹚+﹙2n-8﹚=-8m+6n-8
当2m-n<0时,因为x∈[-4,2],所以ymin=﹙2m-n﹚•2+﹙2n-8﹚=4m-8
∵不等式2xm+(2-x)n-8≥0对任意x∈[-4,2]都成立,
∴m,n满足或
可行域如图或
∴当且仅当m=2,n=6时,
又=,∴的最小值为=-33=-
故答案为:-