满分5 > 高中数学试题 >

已知中心在原点O,焦点在x轴上,离心率为的椭圆过点(,). (1)求椭圆的方程;...

manfen5.com 满分网已知中心在原点O,焦点在x轴上,离心率为manfen5.com 满分网的椭圆过点(manfen5.com 满分网manfen5.com 满分网).
(1)求椭圆的方程;
(2)设不过原点O的直线l与该椭圆交于P,Q两点,满足直线OP,PQ,OQ的斜率依次成等比数列,求△OPQ面积的取值范围.
(1)设出椭圆的方程,将已知点代入椭圆的方程及利用椭圆的离心率公式得到关于椭圆的三个参数的等式,解方程组求出a,b,c的值,代入椭圆方程即可. (2)设出直线的方程,将直线方程与椭圆方程联立,消去x得到关于y的二次方程,利用韦达定理得到关于两个交点的坐标的关系,将直线OP,PQ,OQ的斜率用坐标表示,据已知三个斜率成等比数列,列出方程,将韦达定理得到的等式代入,求出k的值,利用判别式大于0得到m的范围,将△OPQ面积用m表示,求出面积的范围. 【解析】 (1)由题意可设椭圆方程为(a>b>0),则 则故 所以,椭圆方程为. (2)由题意可知,直线l的斜率存在且不为0, 故可设直线l的方程为y=kx+m(m≠0),P(x1,y1),Q(x2,y2), 由消去y得 (1+4k2)x2+8kmx+4(m2-1)=0, 则△=64k2b2-16(1+4k2b2)(b2-1)=16(4k2-m2+1)>0, 且,. 故y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2. 因为直线OP,PQ,OQ的斜率依次成等比数列, 所以=k2, 即+m2=0,又m≠0, 所以k2=,即k=. 由于直线OP,OQ的斜率存在,且△>0,得 0<m2<2且m2≠1. 设d为点O到直线l的距离, 则S△OPQ=d|PQ|=|x1-x2||m|=, 所以S△OPQ的取值范围为(0,1).
复制答案
考点分析:
相关试题推荐
已知二次函数f(x)=ax2+bx满足条件:①f(0)=f(1);  ②f(x)的最小值为-manfen5.com 满分网
(1)求函数f(x)的解析式;
(2)设数列{an}的前n项积为Tn,且Tn=(manfen5.com 满分网f(n),求数列{an}的通项公式;
(3)在(2)的条件下,若5f(an)是bn与an的等差中项,试问数列{bn}中第几项的值最小?求出这个最小值.
查看答案
在等差数列{an}中,a3+a4+a5=84,a9=73.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)对任意m∈N*,将数列{an}中落入区间(9m,92m)内的项的个数记为bm,求数列{bm}的前m项和Sm
查看答案
某房地产开发商投资81万元建一座写字楼,第一年装修费为1万元,以后每年增加2万元,把写字楼出租,每年收入租金30万元.
(1)若扣除投资和装修费,则从第几年开始获取纯利润?
(2)若干年后开发商为了投资其他项目,有两种处理方案:
①纯利润总和最大时,以10万元出售;
②该楼年平均利润最大时以46万元出售该楼,问哪种方案更优?
查看答案
设△ABC是锐角三角形,a,b,c分别是内角A,B,C所对边长,a=2bsinA.
(1)求角B的大小;
(2)求cosA+sinC的取值范围.
查看答案
已知命题p:函数y=x2+mx+1在(-1,+∞)上单调递增,命题q:函数y=4x2+4(m-2)x+1大于0恒成立.若p∧q为假,求实数m的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.