满分5 > 高中数学试题 >

设函数f(x)=|2x+1|-|x-4|. (1)求不等式f(x)>2的解集; ...

设函数f(x)=|2x+1|-|x-4|.
(1)求不等式f(x)>2的解集;
(2)求函数f(x)的最小值.
根据绝对值的代数意义,去掉函数f(x)=|2x+1|-|x-4|中的绝对值符号,求解不等式f(x)>2,画出函数函数f(x)的图象,根据图象求得函数f(x)的最小值. 【解析】 f(x)= (1)①由,解得x<-7; ②,解得<x≤4; ③,解得x>4; 综上可知不等式的解集为{x|x<-7或x>}. (2)如图可知f(x)min=-.
复制答案
考点分析:
相关试题推荐
选修4-4:坐标系与参数方程
在平面直角坐标系中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.已知直线l上两点M,N的极坐标分别为(2,0),(manfen5.com 满分网),圆C的参数方程manfen5.com 满分网(θ为参数).
(Ⅰ)设P为线段MN的中点,求直线OP的平面直角坐标方程;
(Ⅱ)判断直线l与圆C的位置关系.
查看答案
已知函数f(x)=loga(1-x)+loga(x+3)(0<a<1)
(1)求函数f(x)的定义域;
(2)求函数f(x)的零点;
(3)若函数f(x)的最小值为-4,求a的值.
查看答案
设f(x)是定义在(-∞,+∞)上的函数,对一切x∈R均有f(x)+f(x+3)=0,且当-1<x≤1时,f(x)=2x-3,求当2<x≤4时,f(x)的解析式.
查看答案
已知函数manfen5.com 满分网,且manfen5.com 满分网
(1)求m的值;
(2)判定f(x)的奇偶性;
(3)判断f(x)在(0,+∞)上的单调性,并给予证明.
查看答案
已知:A={x|a≤x≤a+3},B={x|x<-1或x>5}
(1)若A∩B=∅,求实数a的取值范围.
(2)若A∪B=B,求实数a的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.