满分5 > 高中数学试题 >

已知函数f(x)=x,函数g(x)=λf(x)+sinx是区间[-1,1]上的减...

已知函数f(x)=x,函数g(x)=λf(x)+sinx是区间[-1,1]上的减函数.
(I)求λ的最大值;
(II)若g(x)<t2+λt+1在x∈[-1,1]上恒成立,求t的取值范围;
(Ⅲ)讨论关于x的方程manfen5.com 满分网的根的个数.
(I)由题意由于f(x)=x,所以函数g(x)=λf(x)+sinx=λx+sinx,又因为该函数在区间[-1,1]上的减函数,所以可以得到λ的范围; (II)由于g(x)<t2+λt+1在x∈[-1,1]上恒成立⇔[g(x)]max=g(-1)=-λ-sinl,解出即可; (III)利用方程与函数的关系可以构造成两函数图形的交点个数加以分析求解. 【解析】 (I)∵f(x)=x, ∴g(x)=λx+sinx, ∵g(x)在[-1,1]上单调递减, ∴g'(x)=λ+cosx≤0 ∴λ≤-cosx在[-1,1]上恒成立,λ≤-1,故λ的最大值为-1. (II)由题意[g(x)]max=g(-1)=-λ-sinl ∴只需-λ-sinl<t2+λt+1 ∴(t+1)λ+t2+sin+1>0(其中λ≤-1),恒成立, 令h(λ)=(t+1)λ+t2+sin1+1>0(λ≤-1), 则, ∴,而t2-t+sin1>0恒成立, ∴t<-1 又t=-1时-λ-sinl<t2+λt+1 故t≤-1(9分) (Ⅲ)由-2ex+m. 令f1(x)=-2ex+m, ∵f1′(x)=, 当x∈(0,e)时,f1′(x)≥0, ∴f1(x)在(0,e]上为增函数; 当x∈[e,+∞)时,f1′(x)≤0, ∴f1(x)在[e,+∞)为减函数; 当x=e时,[f1(x)]max=f1(e)=, 而f2(x)=(x-e)2+m-e2, ∴当m-e2>,即m>时,方程无解; 当m-e2=,即m=时,方程有一个根; 当m-e2<时,m<时,方程有两个根.(14分)
复制答案
考点分析:
相关试题推荐
已知数列{an},{bn}分别是等差、等比数列,且a1=b1=1,a2=b2,a4=b3≠b4
①求数列{an},{bn}的通项公式;
②设Sn为数列{an}的前n项和,求{manfen5.com 满分网}的前n项和Tn
③设Cn=manfen5.com 满分网(n∈N),Rn=C1+C2+…+Cn,求Rn
查看答案
已知manfen5.com 满分网
(1)求函数f(x)的单调递增区间;
(2)在△ABC中,角A、B、C的对边分别是a、b、c,满足(2a-c)cosB=bcosC,求函数f(A)的取值范围.
查看答案
已知a∈R,函数manfen5.com 满分网
(Ⅰ)如果函数g(x)=f′(x)是偶函数,求f(x)的极大值和极小值;
(Ⅱ)如果函数f(x)是(-∞,+∞)上的单调函数,求a的取值范围.
查看答案
已知向量manfen5.com 满分网=(cosωx-sinωx,sinωx),manfen5.com 满分网=(-cosωx-sinωx,2manfen5.com 满分网cosωx),设函数f(x)=manfen5.com 满分网manfen5.com 满分网+λ(x∈R)的图象关于直线x=π对称,其中ω,λ为常数,且ω∈(manfen5.com 满分网,1)
(1)求函数f(x)的最小正周期;
(2)若y=f(x)的图象经过点(manfen5.com 满分网,0)求函数f(x)在区间[0,manfen5.com 满分网]上的取值范围.
查看答案
已知函数f(x)=log2(|x+1|+|x-2|-m).
(1)当m=5时,求函数f(x)的定义域;
(2)若关于x的不等式f(x)≥1的解集是R,求m的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.