满分5 > 高中数学试题 >

如图,正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点. (Ⅰ)求证...

如图,正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点.
(Ⅰ)求证:AB1⊥平面A1BD;
(Ⅱ)求二面角A-A1D-B的正弦值.

manfen5.com 满分网
(Ⅰ)取BC中点O,连接AO,取B1C1中点O1,以0为原点,OB,OO1 ,OA 的方向为x、y、z轴的正方向建立空间直角坐标系,用坐标表示向量,,,验证=0,,即可证明AB1⊥平面A1BD; (Ⅱ)求出平面A1BD的法向量为,平面A1AD的法向量为,再利用向量的夹角公式,即可求得二面角A-A1D-B的正弦值. 【解析】 取BC中点O,连接AO. ∵△ABC为正三角形,∴AO⊥BC、 ∵正三棱柱ABC-A1B1C1中,平面ABC⊥平面BCC1B1, ∴AO⊥平面BCC1B1, 取B1C1中点O1,以0为原点,OB,OO1 ,OA 的方向为x、y、z轴的正方向建立空间直角坐标系 则B(1,0,0),D(-1,1,0),A1(0,2,3 ),A(0,0,3 ),B1(1,2,0), (Ⅰ),, =-1+4-3=0, ∴AB1⊥BD,AB1 ⊥BA1 , ∴AB1⊥平面A1BD; (Ⅱ)平面A1BD的法向量为 设平面A1AD的法向量为=(x,y,z),∴,∴ 令z=1、y=0、x=-,则 ∴cos 设二面角A-A1D-B的平面角为θ,即 ∴ 即二面角A-A1D-B的正弦值为.
复制答案
考点分析:
相关试题推荐
在数列{an}中,a1=2,an+1=4an-3n+1,n∈N*
(1)证明数列{an-n}是等比数列;
(2)设数列{an}的前n项和Sn,求Sn+1-4Sn的最大值.
查看答案
若向量manfen5.com 满分网,在函数manfen5.com 满分网的图象中,对称中心到对称轴的最小距离为manfen5.com 满分网,且当manfen5.com 满分网的最大值为1.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)求函数f(x)的单调递增区间.
查看答案
解不等式:ax2-2(a+1)x+4>0.
查看答案
观察下列等式:manfen5.com 满分网
manfen5.com 满分网
manfen5.com 满分网

由以上等式推测到一个一般的结论:对于n∈N*manfen5.com 满分网=    查看答案
在送医下乡活动中,某医院安排2名男医生和2名女医生到三所乡医院工作,每所医院至少安排一名,且男医生不安排在同一乡医院工作,则不同的安排方法总数为    .(用数字作答) 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.