满分5 > 高中数学试题 >

(1)圆O是△ABC的外接圆,过点C的圆的切线与AB的延长线交于点D,,AB=B...

(1)圆O是△ABC的外接圆,过点C的圆的切线与AB的延长线交于点D,manfen5.com 满分网,AB=BC=3,求BD以及AC的长.
(2)已知曲线C1的极坐标方程为ρ=6cosθ,曲线C2的极坐标方程为manfen5.com 满分网,曲线C1,C2相交于A,B两点
(I)把曲线C1,C2的极坐标方程转化为直角坐标方程;
(II)求弦AB的长度.
(3)已知a,b,c都是正数,且a,b,c成等比数列,求证:a2+b2+c2>(a-b+c)2

manfen5.com 满分网
(1)结合线割线定理,我们可以求出DB的长,再由△DBC∽△DCA根据相似三角形的性质可以求出AC的长; (2)(Ⅰ)利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得曲线C2及曲线C1的直角坐标方程;(Ⅱ)利用直角坐标方程的形式,先求出圆心(3,0)到直线的距离,最后结合点到直线的距离公式弦AB的长度; (3)左边减去右边等于2(ab+bc-ac ),用等比数列的定义以及基本不等式可得 a+c>b,进而推出2(ab+bc-ac )>0,从而证得不等式成立. (1)【解析】 由切割线定理得:DB•DA=DC2,即DB(DB+BA)=DC2, ∴DB2+3DB-28=0,得DB=4. ∵∠A=∠BCD,∴△DBC∽△DCA,∴, ∴AC==; (2)【解析】 (Ⅰ)曲线C2:θ=表示直线y=x,曲线C1:ρ=6cosθ,即ρ2=6ρcosθ,所以x2+y2=6x,即(x-3)2+y2=9 (Ⅱ)∵圆心(3,0)到直线的距离d=,r=3, ∴弦长AB=2=3 (3)证明:∵a2+b2+c2 -(a-b+c)2=2(ab+bc-ac ). ∵a,b,c都是正数,且a,b,c成等比数列, ∴b2 =ac<()2, 开方可得>b,故 a+c>2b>b. ∴2(ab+bc-ac )=2(ab+bc-b2 )=2b(a+c-b)>0, ∴a2+b2+c2 -(a-b+c)2>0, ∴a2+b2+c2>(a-b+c)2 .
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网的图象过坐标原点O,且在点(-1,f(-1))处的切线的斜率是-5.
(Ⅰ)求实数b,c的值;  
(Ⅱ)求f(x)在区间[-1,2]上的最大值;
(Ⅲ)对任意给定的正实数a,曲线y=f(x)上是否存在两点P、Q,使得△POQ是以O为直角顶点的直角三角形,且此三角形斜边中点在y轴上?说明理由.
查看答案
已知椭圆的中心在原点,焦点在y轴上,焦距为4,离心率为manfen5.com 满分网
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆在y轴的正半轴上的焦点为M,又点A和B在椭圆上,且M分有向线段manfen5.com 满分网所成的比为2,求线段AB所在直线的方程.
查看答案
如图,三棱柱A1B1C1-ABC的三视图,主视图和侧视图是全等的矩形,俯视图是等腰直角三角形,点M是A1B1的中点.
(I)求证:B1C∥平面AC1M;
(II)求证:平面AC1M⊥平面AA1B1B.

manfen5.com 满分网 查看答案
甲乙两人轮流抛掷一枚正方体骰子(6个面分别标有1,2,3,4,5,6)各一次,将向上面上的点数分别记为a,b,点数差记为ξ=|a-b|
(1)游戏约定:若ξ≤2,则甲获胜;否则乙获胜.这样的约定是否公平,为什么?
(2)求关于x的方程kx2-ξx-1=0(k∈N*)在(2,3)上有且仅有一个根的概率.
查看答案
已知△ABC的面积S满足manfen5.com 满分网,且manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网的夹角为θ.
(1)求θ的取值范围;
(2)求函数manfen5.com 满分网的最大值及最小值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.