已知函数
.
(1)若函数f(x)在[1,+∞)上为增函数,求正实数a的取值范围;
(2)当a=1时,求f(x)在
上的最大值和最小值;
(3)当a=1时,求证:对大于1的任意正整数n,都有
.
考点分析:
相关试题推荐
己知椭圆C:
+
=1(a>b>0)的离心率为e=
,以原点为圆心,椭圆短半轴长为半径的圆与直线x-y+2=0相切,A,B分别是椭圆的左右两个顶点,P为椭圆C上的动点.
(I)求椭圆的标准方程;
(II) M为过P且垂直于x轴的直线上的点,若
=λ,求点M的轨迹方程,并说明轨迹是什么曲线.
查看答案
某校高三年级有男生105人,女生126人,教师42人,用分层抽样的方法从中抽取13人,进行问卷调查.设其中某项问题的选择支为“同意”,“不同意”两种,且每人都做了一种选择.下面表格中提供了被调查人答卷情况的部分信息.
(I)请完成此统计表;
(II)试估计高三年级学生“同意”的人数;
(III)从被调查的女生中选取2人进行访谈,求选到的两名学生中,恰有一人“同意”一人“不同决的概率.”
查看答案
如图,AB为圆O的直径,点E、F在圆O上,矩形ABCD所在的平面和圆O所在的平面互相垂直,且AB=2,AD=EF=1.
(1)求证:AF⊥平面CBF;
(2)求三棱锥C-OEF的体积.
查看答案
已知向量
=(-2sin(π-x),cosx),
=(
cosx,2sin(
-x)),函数f(x)=1-
•
.
(1)求函数f(x)的解析式;
(2)求f(x)的周期及单调递增区间.
查看答案
已知数列{a
n}中,a
1=1,且点P(a
n,a
n+1)(n∈N
*)在直线x-y+1=0上.
(1)求数列{a
n}的通项公式;
(2)求数列{
}的前n项和S
n.
查看答案