满分5 > 高中数学试题 >

已知函数f(x)=(x-k)ex. (Ⅰ)求f(x)的单调区间; (Ⅱ)求f(x...

已知函数f(x)=(x-k)ex
(Ⅰ)求f(x)的单调区间;
(Ⅱ)求f(x)在区间[0,1]上的最小值.
(I)求导,令导数等于零,解方程,跟据f′(x)f(x)随x的变化情况即可求出函数的单调区间;(Ⅱ)根据(I),对k-1是否在区间[0,1]内进行讨论,从而求得f(x)在区间[0,1]上的最小值. 【解析】 (Ⅰ)f′(x)=(x-k+1)ex, 令f′(x)=0,得x=k-1, f′(x)f(x)随x的变化情况如下: ∴f(x)的单调递减区间是(-∞,k-1),f(x)的单调递增区间(k-1,+∞); (Ⅱ)当k-1≤0,即k≤1时,函数f(x)在区间[0,1]上单调递增, ∴f(x)在区间[0,1]上的最小值为f(0)=-k; 当0<k-1<1,即1<k<2时,由(I)知,f(x)在区间[0,k-1]上单调递减,f(x)在区间(k-1,1]上单调递增, ∴f(x)在区间[0,1]上的最小值为f(k-1)=-ek-1; 当k-1≥1,即k≥2时,函数f(x)在区间[0,1]上单调递减, ∴f(x)在区间[0,1]上的最小值为f(1)=(1-k)e; 综上所述f(x)min=.
复制答案
考点分析:
相关试题推荐
设命题P:函数y=xc-1在(0,+∞)上为减函数,命题Q:y=ln(2cx2+2x+1)的值域为R,命题T:函数y=ln(2cx2+2x+1)定义域为R,
(1)若命题T为真命题,求c的取值范围.
(2)若P或Q为真命题,P且Q为假命题,求c的取值范围.
查看答案
设函数f(x)=2x3-3(a-1)x2+1,其中a≥1.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)讨论f(x)的极值.
查看答案
已知函数f(x)=manfen5.com 满分网在x=1处取得极值2.
(1)求函数f(x)的表达式;
(2)当m满足什么条件时,函数f(x)在区间(m,2m+1)上单调递增?
查看答案
如图,函数F(x)=f(x)+manfen5.com 满分网x2的图象在点P处的切线方程是y=-x+8,则f(5)+f′(5)=   
manfen5.com 满分网 查看答案
命题“若x2<1,则-1<x<1”的逆否命题是     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.