满分5 > 高中数学试题 >

已知函数. (1)若函数f(x)在[1,+∞)上为增函数,求正实数a的取值范围;...

已知函数manfen5.com 满分网
(1)若函数f(x)在[1,+∞)上为增函数,求正实数a的取值范围;
(2)当a=1时,求f(x)在manfen5.com 满分网上的最大值和最小值;
(3)当a=1时,求证:对大于1的任意正整数n,都有manfen5.com 满分网
(1)对函数f(x)进行求导,令导函数大于等于0在[1,+∞)上恒成立即可求出a的范围. (2)将a=1代入函数f(x)的解析式,判断其单调性进而得到最大值和最小值. (3)先判断函数f(x)的单调性,令代入函数f(x)根据单调性得到不等式,令n=1,2,…代入可证. 【解析】 (1)∵ ∴ ∵函数f(x)在[1,+∞)上为增函数 ∴对x∈[1,+∞)恒成立, ∴ax-1≥0对x∈[1,+∞)恒成立,即对x∈[1,+∞)恒成立 ∴a≥1 (2)当a=1时,, ∴当时,f′(x)<0,故f(x)在上单调递减; 当x∈(1,2]时,f′(x)>0,故f(x)在x∈(1,2]上单调递增, ∴f(x)在区间上有唯一极小值点,故f(x)min=f(x)极小值=f(1)=0 又 ∵e3>16 ∴ ∴f(x)在区间上的最大值 综上可知,函数f(x)在上的最大值是1-ln2,最小值是0. (3)当a=1时,,, 故f(x)在[1,+∞)上为增函数. 当n>1时,令,则x>1,故f(x)>f(1)=0 ∴,即 ∴ ∴ ∴ 即对大于1的任意正整数n,都有
复制答案
考点分析:
相关试题推荐
己知椭圆C:manfen5.com 满分网+manfen5.com 满分网=1(a>b>0)的离心率为e=manfen5.com 满分网,以原点为圆心,椭圆短半轴长为半径的圆与直线x-y+2=0相切,A,B分别是椭圆的左右两个顶点,P为椭圆C上的动点.
(I)求椭圆的标准方程;
(II) M为过P且垂直于x轴的直线上的点,若manfen5.com 满分网=λ,求点M的轨迹方程,并说明轨迹是什么曲线.
查看答案
某校高三年级有男生105人,女生126人,教师42人,用分层抽样的方法从中抽取13人,进行问卷调查.设其中某项问题的选择支为“同意”,“不同意”两种,且每人都做了一种选择.下面表格中提供了被调查人答卷情况的部分信息.
manfen5.com 满分网
(I)请完成此统计表;
(II)试估计高三年级学生“同意”的人数;
(III)从被调查的女生中选取2人进行访谈,求选到的两名学生中,恰有一人“同意”一人“不同决的概率.”
查看答案
如图,AB为圆O的直径,点E、F在圆O上,矩形ABCD所在的平面和圆O所在的平面互相垂直,且AB=2,AD=EF=1.
(1)求证:AF⊥平面CBF;
(2)求三棱锥C-OEF的体积.

manfen5.com 满分网 查看答案
已知向量manfen5.com 满分网=(-2sin(π-x),cosx),manfen5.com 满分网=(manfen5.com 满分网cosx,2sin(manfen5.com 满分网-x)),函数f(x)=1-manfen5.com 满分网manfen5.com 满分网
(1)求函数f(x)的解析式;
(2)求f(x)的周期及单调递增区间.
查看答案
已知数列{an}中,a1=1,且点P(an,an+1)(n∈N*)在直线x-y+1=0上.
(1)求数列{an}的通项公式;
(2)求数列{manfen5.com 满分网}的前n项和Sn
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.