满分5 > 高中数学试题 >

在△ABC中,内角A,B,C的对边分别为a,b,c.已知cosA=,sinB=C...

在△ABC中,内角A,B,C的对边分别为a,b,c.已知cosA=manfen5.com 满分网,sinB=manfen5.com 满分网C.
(1)求tanC的值;
(2)若a=manfen5.com 满分网,求△ABC的面积.
(1)由A为三角形的内角,及cosA的值,利用同角三角函数间的基本关系求出sinA的值,再将已知等式的左边sinB中的角B利用三角形的内角和定理变形为π-(A+C),利用诱导公式得到sinB=sin(A+C),再利用两角和与差的正弦函数公式化简,整理后利用同角三角函数间的基本关系即可求出tanC的值; (2)由tanC的值,利用同角三角函数间的基本关系求出cosC的值,再利用同角三角函数间的基本关系求出sinC的值,将sinC的值代入sinB=cosC中,即可求出sinB的值,由a,sinA及sinC的值,利用正弦定理求出c的值,最后由a,c及sinB的值,利用三角形的面积公式即可求出三角形ABC的面积. 【解析】 (1)∵A为三角形的内角,cosA=, ∴sinA==, 又cosC=sinB=sin(A+C)=sinAcosC+cosAsinC=cosC+sinC, 整理得:cosC=sinC, 则tanC=; (2)由tanC=得:cosC====, ∴sinC==, ∴sinB=cosC=, ∵a=,∴由正弦定理=得:c===, 则S△ABC=acsinB=×××=.
复制答案
考点分析:
相关试题推荐
已知命题p:“∀x∈[1,2],x2-a≥0”,命题q:“∃x∈R,x2+2ax+2-a=0”,若命题“p且q”是真命题,求实数a的取值范围.
查看答案
已知点A(3,0)为圆x2+y2=1外一点,P为圆上任意一点,若AP的中点为M,当P在圆上运动时,求点M的轨迹方程.并说明它表示什么曲线.
查看答案
过椭圆manfen5.com 满分网的右焦点作一条斜率为2的直线与椭圆交于A,B两点,O为坐标原点,则弦AB的长为    查看答案
已知x>0,y>0,且manfen5.com 满分网,若x+2y>m2+2m恒成立,则实数m的取值范围是    查看答案
已知等比数列{an}为递增数列,且manfen5.com 满分网,则数列an的通项公式an=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.