已知中心在原点O,焦点在x轴上,离心率为
的椭圆过点(
,
).
(1)求椭圆的方程;
(2)设不过原点O的直线l与该椭圆交于P,Q两点,满足直线OP,PQ,OQ的斜率依次成等比数列,求△OPQ面积的取值范围.
考点分析:
相关试题推荐
设{a
n}是正数组成的数列,其前n项和为S
n,并且对于所有的n∈N
+,都有8S
n=(a
n+2)
2.
(1)写出数列{a
n}的前3项;
(2)求数列{a
n}的通项公式(写出推证过程);
(3)设
,T
n是数列{b
n}的前n项和,求使得
对所有n∈N
+都成立的最小正整数m的值.
查看答案
等比数列{a
n}的各项均为正数,且2a
1+3a
2=1,a
32=9a
2a
6,
(Ⅰ)求数列{a
n}的通项公式;
(Ⅱ)设b
n=log
3a
1+log
3a
2+…+log
3a
n,求数列{
}的前n项和.
查看答案
在△ABC中,内角A,B,C的对边分别为a,b,c.已知cosA=
,sinB=
C.
(1)求tanC的值;
(2)若a=
,求△ABC的面积.
查看答案
已知命题p:“∀x∈[1,2],x
2-a≥0”,命题q:“∃x
∈R,x
2+2ax
+2-a=0”,若命题“p且q”是真命题,求实数a的取值范围.
查看答案
已知点A(3,0)为圆x
2+y
2=1外一点,P为圆上任意一点,若AP的中点为M,当P在圆上运动时,求点M的轨迹方程.并说明它表示什么曲线.
查看答案