设球心为点O,作AB中点D,连接OD,CD,说明SC是球的直径,利用余弦定理,三角形的面积公式求出S△SCD,和棱锥的高AB,即可求出棱锥的体积.
【解析】
设球心为点O,作AB中点D,连接OD,CD 因为线段SC是球的直径,
所以它也是大圆的直径,则易得:∠SAC=∠SBC=90°
所以在Rt△SAC中,SC=4,∠ASC=30° 得:AC=2,SA=2
又在Rt△SBC中,SC=4,∠BSC=30° 得:BC=2,SB=2 则:SA=SB,AC=BC
因为点D是AB的中点所以在等腰三角形ASB中,SD⊥AB且SD===
在等腰三角形CAB中,CD⊥AB且CD===
又SD交CD于点D 所以:AB⊥平面SCD 即:棱锥S-ABC的体积:V=AB•S△SCD,
因为:SD=,CD=,SC=4 所以由余弦定理得:cos∠SDC=(SD2+CD2-SC2)=(+-16)==
则:sin∠SDC==
由三角形面积公式得△SCD的面积S=SD•CD•sin∠SDC==3
所以:棱锥S-ABC的体积:V=AB•S△SCD==
故选C