满分5 > 高中数学试题 >

设函数f(x)=2x3+3ax2+3bx+8c在x=1及x=2时取得极值. (Ⅰ...

设函数f(x)=2x3+3ax2+3bx+8c在x=1及x=2时取得极值.
(Ⅰ)求a、b的值;
(Ⅱ)若对任意的x∈[0,3],都有f(x)<c2成立,求c的取值范围.
(1)依题意有,f'(1)=0,f'(2)=0.求解即可. (2)若对任意的x∈[0,3],都有f(x)<c2成立⇔f(x)max<c2在区间[0,3]上成立,根据导数求出函数在[0,3]上的最大值,进一步求c的取值范围. 【解析】 (Ⅰ)f'(x)=6x2+6ax+3b, 因为函数f(x)在x=1及x=2取得极值,则有f'(1)=0,f'(2)=0. 即 解得a=-3,b=4. (Ⅱ)由(Ⅰ)可知,f(x)=2x3-9x2+12x+8c,f'(x)=6x2-18x+12=6(x-1)(x-2). 当x∈(0,1)时,f'(x)>0; 当x∈(1,2)时,f'(x)<0; 当x∈(2,3)时,f'(x)>0. 所以,当x=1时,f(x)取得极大值f(1)=5+8c,又f(0)=8c,f(3)=9+8c. 则当x∈[0,3]时,f(x)的最大值为f(3)=9+8c. 因为对于任意的x∈[0,3],有f(x)<c2恒成立, 所以9+8c<c2, 解得c<-1或c>9, 因此c的取值范围为(-∞,-1)∪(9,+∞).
复制答案
考点分析:
相关试题推荐
以知椭圆manfen5.com 满分网的两个焦点分别为F1(-c,0)和F2(c,0)(c>0),过点manfen5.com 满分网的直线与椭圆相交与A,B两点,且F1A∥F2B,|F1A|=2|F2B|.
(1)求椭圆的离心率;
(2)求直线AB的斜率;
(3)设点C与点A关于坐标原点对称,直线F2B上有一点H(m,n)(m≠0)在△AF1C的外接圆上,求manfen5.com 满分网的值.
查看答案
如图,在五面体ABCDEF中,FA⊥平面ABCD,AD∥BC∥FE,AB⊥AD,M为EC的中点,manfen5.com 满分网
(I)求异面直线BF与DE所成的角的大小;
(II)证明平面AMD⊥平面CDE.

manfen5.com 满分网 查看答案
某市十所重点中学进行高三联考,共有5000名考生,为了了解数学学科的学习情况,现从中随机抽出若干名学生在这次测试中的数学成绩,制成如下频率分布表:
manfen5.com 满分网
(Ⅰ)根据上面频率分布表,推出①,②,③,④处的数值分别为________________________
(Ⅱ)在所给的坐标系中画出区间上的频率分布直方图;
(Ⅲ)根据题中信息估计总体:(ⅰ)120分及以上的学生数;(ⅱ)平均分;(ⅲ)成绩落在[126,150]中的概率.
查看答案
在△ABC中,manfen5.com 满分网
(Ⅰ)求AB的值.
(Ⅱ)求manfen5.com 满分网的值.
查看答案
给出的下列四个命题中:
①命题“∃x∈R,x2+1>3x”的否定是“∀x∈R,x2+1≤3x”;
②“m=-2”是“直线(m+2)x+my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直”的充分不必要条件;
③设圆x2+y2+Dx+Ey+F=0(D2+E2-4F>0)与坐标轴有4个交点,分别为A(x1,0),B(x2,0),C(0,y1),D(0,y2),则x1x2-y1y2=0;
④关于x的不等式|x+1|+|x-3|≥m的解集为R,则m≤4.
其中所有真命题的序号是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.