登录
|
注册
返回首页
联系我们
在线留言
满分5
>
高中数学试题
>
在直径是AB的半圆上有两点M,N,设AN与BM的交点是P.求证:AP•AN+BP...
在直径是AB的半圆上有两点M,N,设AN与BM的交点是P.求证:AP•AN+BP•BM=AB
2
.
作PE⊥AB于E,先证明P,E,B,N四点共圆,P,E,A,M四点共圆,得到两对乘积式,后相加即可得到结论. 证明:作PE⊥AB于E∵AB为直径, ∴∠ANB=∠AMB=90° ∴P,E,B,N四点共圆,P,E,A,M四点共圆. AE•AB=AP•AN(1) BE•AB=BP•BM(2) (1)+(2)得AB(AE+BE)=AP•AN+BP•BM 即AP•AN+BP•BM=AB2
复制答案
考点分析:
相关试题推荐
设函数f(x)=2x
3
+3ax
2
+3bx+8c在x=1及x=2时取得极值.
(Ⅰ)求a、b的值;
(Ⅱ)若对任意的x∈[0,3],都有f(x)<c
2
成立,求c的取值范围.
查看答案
以知椭圆
的两个焦点分别为F
1
(-c,0)和F
2
(c,0)(c>0),过点
的直线与椭圆相交与A,B两点,且F
1
A∥F
2
B,|F
1
A|=2|F
2
B|.
(1)求椭圆的离心率;
(2)求直线AB的斜率;
(3)设点C与点A关于坐标原点对称,直线F
2
B上有一点H(m,n)(m≠0)在△AF
1
C的外接圆上,求
的值.
查看答案
如图,在五面体ABCDEF中,FA⊥平面ABCD,AD∥BC∥FE,AB⊥AD,M为EC的中点,
(I)求异面直线BF与DE所成的角的大小;
(II)证明平面AMD⊥平面CDE.
查看答案
某市十所重点中学进行高三联考,共有5000名考生,为了了解数学学科的学习情况,现从中随机抽出若干名学生在这次测试中的数学成绩,制成如下频率分布表:
(Ⅰ)根据上面频率分布表,推出①,②,③,④处的数值分别为______,______,______,______;
(Ⅱ)在所给的坐标系中画出区间上的频率分布直方图;
(Ⅲ)根据题中信息估计总体:(ⅰ)120分及以上的学生数;(ⅱ)平均分;(ⅲ)成绩落在[126,150]中的概率.
查看答案
在△ABC中,
(Ⅰ)求AB的值.
(Ⅱ)求
的值.
查看答案
试题属性
题型:解答题
难度:中等
Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.