满分5 > 高中数学试题 >

如图,在五面体ABCDEF中,FA⊥平面ABCD,AD∥BC∥FE,AB⊥AD,...

如图,在五面体ABCDEF中,FA⊥平面ABCD,AD∥BC∥FE,AB⊥AD,M为EC的中点,AF=AB=BC=FE=manfen5.com 满分网AD,
(1)求异面直线BF与DE所成的角的大小;
(2)证明平面AMD⊥平面CDE;
(3)求二面角A-CD-E的余弦值.

manfen5.com 满分网
(1)先将BF平移到CE,则∠CED(或其补角)为异面直线BF与DE所成的角,在三角形CED中求出此角即可; (2)欲证平面AMD⊥平面CDE,即证CE⊥平面AMD,根据线面垂直的判定定理可知只需证CE与平面AMD内两相交直线垂直即可,易证DM⊥CE,MP⊥CE; (3)设Q为CD的中点,连接PQ,EQ,易证∠EQP为二面角A-CD-E的平面角,在直角三角形EQP中求出此角即可. (1)【解析】 由题设知,BF∥CE, 所以∠CED(或其补角)为异面直线BF与DE所成的角. 设P为AD的中点,连接EP,PC. 因为FE=∥AP,所以FA=∥EP,同理AB=∥PC. 又FA⊥平面ABCD,所以EP⊥平面ABCD. 而PC,AD都在平面ABCD内, 故EP⊥PC,EP⊥AD.由AB⊥AD,可得PC⊥AD设FA=a, 则EP=PC=PD=a,CD=DE=EC=,故∠CED=60°. 所以异面直线BF与DE所成的角的大小为60° (2)证明:因为DC=DE且M为CE的中点, 所以DM⊥CE.连接MP,则MP⊥CE.又MP∩DM=M, 故CE⊥平面AMD.而CE⊂平面CDE, 所以平面AMD⊥平面CDE. (3)【解析】 设Q为CD的中点,连接PQ,EQ. 因为CE=DE,所以EQ⊥CD.因为PC=PD, 所以PQ⊥CD,故∠EQP为二面角A-CD-E的平面角. 可得,.
复制答案
考点分析:
相关试题推荐
在10件产品中,有3件一等品,4件二等品,3件三等品.从这10件产品中任取3件,求:
(I)取出的3件产品中一等品件数X的分布列和数学期望;
(II)取出的3件产品中一等品件数多于二等品件数的概率.
查看答案
在△ABC中,manfen5.com 满分网
(Ⅰ)求AB的值.
(Ⅱ)求manfen5.com 满分网的值.
查看答案
用数字0,1,2,3,4,5,6组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有    个(用数字作答) 查看答案
在四边形ABCD中,manfen5.com 满分网=manfen5.com 满分网=(1,1),manfen5.com 满分网,则四边形ABCD的面积是    查看答案
(x+1)3+(x-2)8=a+a1(x-1)2+a2(x-1)2+…+a8(x-1)8,则a6=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.