满分5 > 高中数学试题 >

已知圆O:x2+y2=2交x轴于A,B两点,曲线C是以AB为长轴,离心率为的椭圆...

manfen5.com 满分网已知圆O:x2+y2=2交x轴于A,B两点,曲线C是以AB为长轴,离心率为manfen5.com 满分网的椭圆,其左焦点为F.若P是圆O上一点,连接PF,过原点O作直线PF的垂线交椭圆C的左准线于点Q.
(1)求椭圆C的标准方程;
(2)若点P的坐标为(1,1),求证:直线PQ与圆O相切;
(3)试探究:当点P在圆O上运动时(不与A、B重合),直线PQ与圆O是否保持相切的位置关系?若是,请证明;若不是,请说明理由.
(1)因为,所以c=1,由此能得到椭圆C的标准方程. (2)因为P(1,1),所以,所以kOQ=-2,所以直线OQ的方程为y=-2x.再由椭圆的左准线方程为x=-2,能够证明直线PQ与圆O相切. (3)当点P在圆O上运动时,直线PQ与圆O保持相切.设P(x,y)(),则y2=2-x2, 所以,,所以直线OQ的方程为,由此知直线PQ始终与圆O相切. 【解析】 (1)因为,所以c=1(2分) 则b=1,即椭圆C的标准方程为(4分) (2)因为P(1,1),所以, 所以kOQ=-2,所以直线OQ的方程为y=-2x(6分) 又椭圆的左准线方程为x=-2,所以点Q(-2,4)(7分) 所以kPQ=-1,又kOP=1,所以kOP⊥kPQ=-1,即OP⊥PQ, 故直线PQ与圆O相切(9分) (3)当点P在圆O上运动时,直线PQ与圆O保持相切(10分) 证明:设P(x,y)(),则y2=2-x2, 所以,, 所以直线OQ的方程为(12分) 所以点Q(-2,)(13分) 所以, 又, 所以kOP⊥kPQ=-1,即OP⊥PQ,故直线PQ始终与圆O相切(15分)
复制答案
考点分析:
相关试题推荐
已知等差数列{an}的公差大于0,且a3,a5是方程x2-14x+45=0的两根,数列{bn}的前n项的和为Sn,且Sn=1-manfen5.com 满分网
(1)求数列{an},{bn}的通项公式;
(2)记cn=anbn,求证cn+1≤cn
查看答案
如图(1)所示,正△ABC的边长为2a,CD是AB边上的高,E,F分别是AC,BC的中点.现将△ABC沿CD翻折,使翻折后平面ACD⊥平面BCD(如图(2)),
(1)试判断翻折后直线AB与平面DEF的位置关系,并说明理由;
(2)求三棱锥C-DEF的体积.

manfen5.com 满分网 查看答案
为了更好的开展社团活动,丰富同学们的课余生活,现用分层抽样的方法从“模拟联合国”,“街舞”,“动漫”,“话剧”四个社团中抽取若干人组成校社团指导小组,有关数据见下表(单位:人)
社团相关人数抽取人数
模拟联合国24a
街舞183
动漫b4
话剧12c
(1)求a,b,c的值;
(2)若从“动漫”与“话剧”社团已抽取的人中选2人担任指导小组组长,求这2人分别来自这两个社团的概率.
查看答案
已知sin(π-α)=manfen5.com 满分网,α∈(0,manfen5.com 满分网).
(1)求sin2α-cos2manfen5.com 满分网的值;
(2)求函数f(x)=manfen5.com 满分网cosαsin2x-manfen5.com 满分网cos2x的单调递增区间.
查看答案
AB是圆O的直径,EF切圆O于C,AD⊥EF于D,AD=2,AB=6,则AC长为   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.