满分5 > 高中数学试题 >

已知椭圆C:+=1(a>b>0)的离心率为,以原点为圆心,椭圆的短半轴长为半径的...

已知椭圆C:manfen5.com 满分网+manfen5.com 满分网=1(a>b>0)的离心率为manfen5.com 满分网,以原点为圆心,椭圆的短半轴长为半径的圆与直线x-y+manfen5.com 满分网=0相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若过点M(2,0)的直线与椭圆C相交于A,B两点,设P为椭圆上一点,且满足manfen5.com 满分网(O为坐标原点),当|manfen5.com 满分网-manfen5.com 满分网|<manfen5.com 满分网时,求实数t取值范围.
(Ⅰ)由题意知,所以.由此能求出椭圆C的方程. (Ⅱ)由题意知直线AB的斜率存在.设AB:y=k(x-2),A(x1,y1),B(x2,y2),P(x,y),由得(1+2k2)x2-8k2x+8k2-2=0再由根的判别式和嘏达定理进行求解. 【解析】 (Ⅰ)由题意知,所以. 即a2=2b2.(2分) 又因为,所以a2=2,. 故椭圆C的方程为.(4分) (Ⅱ)由题意知直线AB的斜率存在.设AB:y=k(x-2),A(x1,y1),B(x2,y2),P(x,y), 由得(1+2k2)x2-8k2x+8k2-2=0.△=64k4-4(2k2+1)(8k2-2)>0,.(6分) ,∵∴(x1+x2,y1+y2)=t(x,y), ∴, ∵点P在椭圆上,∴,∴16k2=t2(1+2k2).(8分) ∵<,∴,∴ ∴,∴(4k2-1)(14k2+13)>0,∴.(10分) ∴,∵16k2=t2(1+2k2),∴, ∴或,∴实数t取值范围为.(12分)
复制答案
考点分析:
相关试题推荐
已知数列{an},{bn}满足:a1=3b1=3,a2=6,bn+1=2bn-2n,bn=an-nan-1(n≥2,n∈N*).
(I)探究数列manfen5.com 满分网是等差数列还是等比数列,并由此求数列{bn}的通项公式;
(II)求数列{nan}的前n项和Sn
查看答案
manfen5.com 满分网如图为一简单组合体,其底面ABCD为正方形,PD⊥平面ABCD,EC∥PD,且PD=2EC,
(1)求证:BE∥平面PDA;
(2)若N为线段PB的中点,求证:EN⊥平面PDB;
(3)若manfen5.com 满分网,求平面PBE与平面ABCD所成的二面角的大小.
查看答案
工人在包装某产品时不小心将两件不合格的产品一起放进了一个箱子,此时该箱子中共有外观完全相同的六件产品.只有将产品逐一打开检验才能确定哪两件产品是不合格的,产品一旦打开检验不管是否合格都将报废.记ξ表示将两件不合格产品全部检测出来后四件合格品中报废品的数量.
(1)求报废的合格品少于两件的概率;
(2)求ξ的分布列和数学期望.
查看答案
在△ABC中,角A、B、C所对的边分别为a、b、c,manfen5.com 满分网=(2a,1),manfen5.com 满分网=(2b-c,cosC)且manfen5.com 满分网manfen5.com 满分网
求:
(I)求sinA的值;
(II)求三角函数式manfen5.com 满分网的取值范围.
查看答案
在数学中“所有”一词,叫做全称量词,用符号“∀”表示;“存在”一词,叫做存在量词,用符号“∃”表示.设manfen5.com 满分网
①若∃x∈(2,+∞),使f(x)=m成立,则实数m的取值范围为   
②若∀x1∈(2,+∞),∃x2∈(2,+∞)使得f(x1)=g(x2),则实数a的取值范围为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.