满分5 > 高中数学试题 >

已知定义域为R的函数f(x)满足f(f(x)-x2+x)=f(x)-x2+x. ...

已知定义域为R的函数f(x)满足f(f(x)-x2+x)=f(x)-x2+x.
(I)若f(2)=3,求f(1);又若f(0)=a,求f(a);
(Ⅱ)设有且仅有一个实数x,使得f(x)=x,求函数f(x)的解析表达式.
(I)由题意知f(f(2)-22+2)=f(2)-22+2,f(1)=1,由上此可推出f(a)=a. (II)因为对任意x∈R,有f(f(x)-x2+x)=f(x)-x2+x.又因为有且只有一个实数x,使得f(x)=x 所以对任意x∈R,有f(x)-x2+x=x,因为f(x)=x,所以x-x2=0,故x=0或x=1.由此可推导出f(x)=x2-x+1(x∈R). 【解析】 (I)因为对任意x∈R,有f(f(x)-x2+x)=f(x)-x2+x 所以f(f(2)-22+2)=f(2)-22+2 又由f(2)=3,得f(3-22+2)=3-22+2,即f(1)=1 若f(0)=a,则f(a-02+0)=a-02+0,即f(a)=a. (II)因为对任意x∈R,有f(f(x)-x2+x)=f(x)-x2+x. 又因为有且只有一个实数x,使得f(x)=x 所以对任意x∈R,有f(x)-x2+x=x 在上式中令x=x,有f(x)-x2+x=x 又因为f(x)=x,所以x-x2=0,故x=0或x=1 若x=0,则f(x)-x2+x=0,即f(x)=x2-x 但方程x2-x=x有两个不相同实根,与题设条件矛盾.故x≠0 若x=1,则有f(x)-x2+x=1,即f(x)=x2-x+1.易验证该函数满足题设条件. 综上,所求函数为f(x)=x2-x+1(x∈R)
复制答案
考点分析:
相关试题推荐
已知等比数列{an}的前n项和为Sn,公比为q
(1)若m,n∈N*,证明:manfen5.com 满分网
(2)若Sn、Sn+2、Sn+1依次成等差数列,求公比q的值.
查看答案
已知函数f(x)=manfen5.com 满分网-log2x,正实数a,b,c是公差为正数的等差数列,且满足f(a)f(b)f(c)<0.若实数d是方程f(x)=0的一个解,那么下列四个判断:①d<a;②d<b;③d<c;④d>c中有可能成立的个数为( )
A.1
B.2
C.3
D.4
查看答案
设a>1,若对于任意的x∈[a,2a],都有y∈[a,a2]满足方程logax+logay=3,这时a的取值集合为( )
A.{a|1<a≤2}
B.{a|a≥2}
C.{a|2≤a≤3}
D.{2,3}
查看答案
已知A、B、C是三角形的三个顶点,manfen5.com 满分网,则△ABC为( )
A.等腰三角形
B.直角三角开
C.等腰直角三角形
D.既非等腰三角形又非直角三角形
查看答案
对于函数f(x)=asinx+bx+c(其中,a,b∈R,c∈Z),选取a,b,c的一组值计算f(1)和f(-1),所得出的正确结果一定不可能是( )
A.4和6
B.3和1
C.2和4
D.1和2
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.