满分5 > 高中数学试题 >

某园林公司计划在一块以O为圆心,R(R为常数,单位为米)为半径的半圆形(如图)地...

某园林公司计划在一块以O为圆心,R(R为常数,单位为米)为半径的半圆形(如图)地上种植花草树木,其中弓形CMDC区域用于观赏样板地,△OCD区域用于种植花木出售,其余区域用于种植草皮出售.已知观赏样板地的成本是每平方米2元,花木的利润是每平方米8元,草皮的利润是每平方米3元.
(1)设∠COD=θ(单位:弧度),用θ表示弓形CMDC的面积S=f(θ);
(2)园林公司应该怎样规划这块土地,才能使总利润最大?并求相对应的θ.
(参考公式:扇形面积公式manfen5.com 满分网,l表示扇形的弧长)

manfen5.com 满分网
(1)设∠COD=θ(单位:弧度),利用扇形面积减去三角形的面积,即可求出弓形CMDC的面积S弓=f(θ); (2)设总利润为y元,草皮利润为y1元,花木地利润为y2,观赏样板地成本为y3,求出y的表达式,利用导数确定函数的最大值,得到结果. 【解析】 (1),,. (2)设总利润为y元,草皮利润为y1元,花木地利润为y2,观赏样板地成本为y3,,, ∴.= 设g(θ)=5θ-10sinθθ∈(0,π).g′(θ)=5-10cosθ上为减函数;上为增函数. 当时,g(θ)取到最小值,此时总利润最大. 答:所以当园林公司把扇形的圆心角设计成时,总利润最大.
复制答案
考点分析:
相关试题推荐
已知数列{an}满足:1•a1+2•a2+3•a3+…n•an=n
(1)求{an}的通项公式;
(2)若manfen5.com 满分网,求{bn}的前n项和Sn
查看答案
已知向量manfen5.com 满分网,定义函数manfen5.com 满分网
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)求函数f(x)的单调减区间;
(Ⅲ)在答卷的坐标系中画出函数manfen5.com 满分网的简图,并由图象写出g(x)的对称轴和对称中心.
查看答案
已知命题“∃x∈[1,2],使x2+2x+a≥0”为真命题,求a的取值范围.
查看答案
下图展示了一个由区间(0,1)到实数集R的映射过程:区间(0,1)中的实数m对应数轴上的点M,如图1;将线段AB围成一个圆,使两端点A、B恰好重合,如图2;再将这个圆放在平面直角坐标系中,使其圆心在y轴上,点A的坐标为(0,1),如图3.图3中直线AM与x轴交与点N(n,0),则m的象就是n,记作f(m)=n
manfen5.com 满分网
下列说法中正确的命题的序号是     (填出所有正确命题的序号).
manfen5.com 满分网
②f(x)是奇函数;
③f(x)在定义域上单调递增;
④f(x)的图象关于点(manfen5.com 满分网,0)对称 查看答案
一艘海轮从A处出发,以每小时40海里的速度沿东偏南50°方向直线航行,30分钟后到达B处,在C处有一座灯塔,海轮在A处观察灯塔,其方向是东偏南20°,在B处观察灯塔,其方向是北偏东65°,那么B、C两点间的距离是    海里. 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.