满分5 > 高中数学试题 >

已知数列{an}的前n项为和Sn,点在直线上.数列{bn}满足bn+2-2bn+...

已知数列{an}的前n项为和Sn,点manfen5.com 满分网在直线manfen5.com 满分网上.数列{bn}满足bn+2-2bn+1+bn=0(n∈N*),且b3=11,前9项和为153.
(Ⅰ)求数列{an}、{bn}的通项公式;
(Ⅱ)设manfen5.com 满分网,数列{cn}的前n和为Tn,求使不等式manfen5.com 满分网对一切n∈N*都成立的最大正整数k的值.
(Ⅲ)设manfen5.com 满分网是否存在m∈N*,使得f(m+15)=5f(m)成立?若存在,求出m的值;若不存在,请说明理由.
(Ⅰ)把点点代入直线方程,进而求得,则Sn可得.进而根据an=Sn-Sn-1求得an.整理bn+2-2bn+1+bn=0得bn+2-bn+1=bn+1-bn,判断出{bn}为等差数列根据b3和b7求得公差,进而根据等差数列的通项公式求得bn. (Ⅱ)先用裂项法求得Tn,进而求得Tn-Tn-1>0,推知Tn单调递增,进而求得Tn的最小值,则k的范围可得. (Ⅲ)把(1)中求得的bn和an代入函数 解析式,分别看m为奇数和偶数时利用f(m+15)=5f(m)求得m,最后综合可得答案. 【解析】 (Ⅰ)由题意,得 故当n≥2时, 注意到n=1时,a1=S1=6,而当n=1时,n+5=6, 所以,an=n+5(n∈N*). 又bn+2-2bn+1+bn=0,即bn+2-bn+1=bn+1-bn(n∈N*), 所以{bn}为等差数列 于是 而 因此,bn=b3+3(n-3)=3n+2,即bn=3n+2(n∈N*). (Ⅱ)= 所以,= 由于, 因此Tn单调递增,故 令 (Ⅲ) ①当m为奇数时,m+15为偶数. 此时f(m+15)=3(m+15)+2=3m+47,5f(m)=5(m+5)=5m+25, 所以3m+47=5m+25,m=11. ②当m为偶数时,m+15为奇数. 此时f(m+15)=m+15+5=m+20,5f(m)=5(3m+2)=15m+10, 所以(舍去). 综上,存在唯一正整数m=11,使得f(m+15)=5f(m)成立.
复制答案
考点分析:
相关试题推荐
某园林公司计划在一块以O为圆心,R(R为常数,单位为米)为半径的半圆形(如图)地上种植花草树木,其中弓形CMDC区域用于观赏样板地,△OCD区域用于种植花木出售,其余区域用于种植草皮出售.已知观赏样板地的成本是每平方米2元,花木的利润是每平方米8元,草皮的利润是每平方米3元.
(1)设∠COD=θ(单位:弧度),用θ表示弓形CMDC的面积S=f(θ);
(2)园林公司应该怎样规划这块土地,才能使总利润最大?并求相对应的θ.
(参考公式:扇形面积公式manfen5.com 满分网,l表示扇形的弧长)

manfen5.com 满分网 查看答案
已知数列{an}满足:1•a1+2•a2+3•a3+…n•an=n
(1)求{an}的通项公式;
(2)若manfen5.com 满分网,求{bn}的前n项和Sn
查看答案
已知向量manfen5.com 满分网,定义函数manfen5.com 满分网
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)求函数f(x)的单调减区间;
(Ⅲ)在答卷的坐标系中画出函数manfen5.com 满分网的简图,并由图象写出g(x)的对称轴和对称中心.
查看答案
已知命题“∃x∈[1,2],使x2+2x+a≥0”为真命题,求a的取值范围.
查看答案
下图展示了一个由区间(0,1)到实数集R的映射过程:区间(0,1)中的实数m对应数轴上的点M,如图1;将线段AB围成一个圆,使两端点A、B恰好重合,如图2;再将这个圆放在平面直角坐标系中,使其圆心在y轴上,点A的坐标为(0,1),如图3.图3中直线AM与x轴交与点N(n,0),则m的象就是n,记作f(m)=n
manfen5.com 满分网
下列说法中正确的命题的序号是     (填出所有正确命题的序号).
manfen5.com 满分网
②f(x)是奇函数;
③f(x)在定义域上单调递增;
④f(x)的图象关于点(manfen5.com 满分网,0)对称 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.